首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
The hormonally active form of vitamin D, 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] stimulates biological responses related to calcium homeostasis, cell differentiation, and immunomodulation in many target cells, including leukemic cells. Most of these responses are dependent upon 1 alpha,25(OH)2D3 interaction with a nuclear receptor protein. Structural analogues of 1 alpha,25(OH)2D3 might allow for separation of biological function, avoiding adverse calcemic effects. This report quantitates intestinal calcium absorption, bone calcium resorption, induction of intestinal and renal calcium-binding protein (CaBP), and occupancy of the intestinal and renal nuclear 1 alpha,25(OH)2D3 receptor in vitamin D-deficient chicks after a single dose of 1 alpha,25(OH)2D3, 1 alpha,25-dihydroxyvitamin-16-ene-23-yne-D3 (analogue V), or 22-[m-(dimethylhydroxymethyl)phenyl]-23,24,25,26,27- pentanor-1 alpha-hydroxy-vitamin D3 (analogue EV). The interaction of these compounds with chick intestinal nuclear 1 alpha,25(OH)2D3 receptor and chick plasma vitamin D-binding protein was determined in vitro; analogues V and EV bound 68% and 62% [1 alpha,25(OH)2D3 receptor] and 8% and 13% (vitamin D-binding protein), respectively, as well as 1 alpha,25(OH)2D3 (100%). 1 alpha,25(OH)2D3 doses (0.075-1.2 nmol) generated responses in intestinal calcium absorption, bone calcium resorption, intestinal CaBP, and renal CaBP. When analogue V (1.2-300 nmol) was administered, increases in bone calcium resorption and renal CaBP were noted. However, a significant response in intestinal calcium absorption and intestinal CaBP appeared only after a 300-nmol dose. Unoccupied nuclear 1 alpha,25(OH)2D3 receptor in the intestine and kidney was determined in vivo after doses of 1 alpha,25(OH)2D3, analogue V, or analogue EV. Doses (0.25-6.0 nmol) of 1 alpha,25(OH)2D3 and analogue EV reduced unoccupied receptor to 24% and 59% (intestine) and to 13% and 41% (kidney), respectively. Analogue V (6.0-600 nmol) decreased unoccupied receptor in the kidney. In the intestine analogue V (300-600 nmol) reduced unoccupied receptor only to 75%. These results confirm that some vitamin D analogues can generate selective biological responses and different levels of target organ receptor occupancy.  相似文献   

2.
1 alpha,25-Dihydroxyvitamin D3[1 alpha,25(OH)2D3], an active form of vitamin D, has roles in many biological phenomena such as calcium homeostasis and bone formation, which are thought to be mediated by the 1 alpha,25(OH)2D3 receptor (VDR), a member of the nuclear hormone receptor superfamily. However, the molecular basis for the actions of 1 alpha,25(OH)2D3 in bone formation, its role during development and VDR genetic polymorphisms for predicting bone mineral density are uncertain. To investigate the functional role of VDR, we generated mice deficient in VDR by gene targeting. We report here that in VDR null mutant mice, no defects in development and growth were observed before weaning, irrespective of reduced expression of vitamin D target genes. After weaning, however, mutants failed to thrive, with appearance of alopoecia, hypocalcaemia and infertility, and bone formation was severely impaired as a typical feature of vitamin D-dependent rickets type II (refs 8, 9). Unlike humans with this disease, most of the null mutant mice died within 15 weeks after birth, and uterine hypoplasia with impaired folliculogenesis was found in female reproductive organs. These defects, such as alopoecia and uterine hypoplasia, were not observed in vitamin D-deficient animals. The findings establish a critical role for VDR in growth, bone formation and female reproduction in the post-weaning stage.  相似文献   

3.
KH 1060 is the 20-epi-22-oxa-24a-homo-26,27-dimethyl analogue of the natural hormone, 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3). We have previously shown that after topical application in hairless mice both KH 1060 and 1 alpha,25(OH)2D3 cause epidermal hyperproliferation. MC 1582 differs from KH 1060 by the lack of hydroxyl group in the side chain which is required for receptor binding. We found that MC 1582 strongly stimulates epidermal hyperplasia in hairless mice after topical application in vivo, approaching in potency KH 1060. A similar, although much weaker response was also obtained with 1 alpha-hydroxyvitamin D3 (1 alpha(OH)D3). Since only the vitamin D compounds which possess hydroxyl groups both in the position 1 alpha and in the side chain, bind to the vitamin D receptor, we suggest that a local metabolism of MC 1582 and 1 alpha(OH)D3 takes place in the skin to the active, side-chain-hydroxylated species, probably to KH 1060 and 1 alpha,25(OH)2D3. This study suggests that 1 alpha hydroxylated prodrugs may be of use in the dermatological treatment of the future.  相似文献   

4.
We previously reported nongenomic activation of ROS 17/2.8 cells by vitamin D metabolites (1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3], 25-hydroxyvitamin D3, 22-oxa-calcitriol, etc.). The hormone 1 alpha,25-(OH)2D3, or calcitriol, mediated rapid transient changes in intracellular free calcium levels and concomitant stimulation of inositol polyphosphate and diacylglycerol production. These effects resemble the mechanism of cell activation induced by ligands with plasma membrane (PM) receptors. As preliminary studies indicated that PM isolated from ROS 17/2.8 cells lacked specific binding sites for calcitriol alone, we studied the association between calcitriol-occupied vitamin D receptors (VDR) and ROS 17/2.8 cellular membranes. Saturable binding to the PM and the endoplasmic reticulum (ER) of calcitriol-occupied VDR was demonstrated. Binding of the VDR-[3H]calcitriol complex was displaceable by nonradioactive VDR/calcitriol, but not by the unoccupied VDR or by calcitriol alone. ER binding, but not PM binding, was competitively inhibited by a peptide from the VDR sequence recognized by an ER protein, calreticulin, and by an anticalreticulin antibody. The monoclonal antibody (9A7) against the VDR inhibited PM and ER binding of the hormone-occupied VDR. These results were substantiated by studies using baculovirus-expressed human VDR for binding studies with the PM and ER and for immunoblot analysis. We conclude that specific PM and ER sites of association for calcitriol-occupied VDR exist and suggest that these associations could participate in the nongenomic rapid actions of 1 alpha,25-(OH)2D3.  相似文献   

5.
The hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] generates biological responses via both genomic and rapid, nongenomic mechanisms. The genomic responses utilize signal transduction pathways linked to a nuclear receptor (VDRnuc) for 1alpha,25(OH)2D3, while the rapid responses are believed to utilize other signal transduction pathways that may be linked to a putative membrane receptor for 1alpha,25(OH)2D3. The natural seco steroid is capable of facile rotation about its 6,7 single carbon bond, which permits generation of a continuum of potential ligand shapes extending from the 6-s-cis (steroid like) to the 6-s-trans (extended). To identify the shape of conformer(s) that can serve as agonists for the genomic and rapid biological responses, we measured multiple known agonist activities of two families of chemically synthesized analogs that were either locked in the 6-s-cis (6C) or 6-s-trans (6T) conformation. We found that 6T locked analogs were inactive or significantly less active than 1alpha,25(OH)2D3 in both rapid responses (transcaltachia in perfused chick intestine, 45Ca2+ influx in ROS 17/2.8 cells) and genomic (osteocalcin induction in MG-63 cells, differentiation of HL-60 cells, growth arrest of MCF-7 cells, promoter transfection in COS-7 cells) assays. In genomic assays, 6C locked analogs bound poorly to the VDRnuc and were significantly less effective than 1alpha,25(OH)2D3 in the same series of assays designed to measure genomic responses. In contrast, the 6C locked analogs were potent agonists of both rapid response pathways and had activities equivalent to the conformationally flexibile 1alpha,25(OH)2D3; this represents the first demonstration that 6-s-cis locked analogs can function as agonists for vitamin D responses.  相似文献   

6.
Vitamin D3 must undergo two hydroxylation steps before it becomes fully active: 25-hydroxylation in the liver and 1- or 24-hydroxylation in the kidney. Parathyroid hormone, serum phosphate, and serum calcium are important in regulation of renal production of 1,25-dihydroxy vitamin D3 (1,25-[OH]2D3) and 24,25-dihydroxy vitamin D3. An enzyme involved in renal hydroxylation is deficient or defective in patients with chronic renal failure, the Fanconi syndrome, vitamin D-dependent rickets, hypoparathyroidism, and pseudohypoparathyroidism. Altered vitamin D metabolism also occurs in various hepatic diseases, postmenopausal osteoporosis, and anticonvulsant osteomalacia. Recently, 1,25-(OH)2D3 was approved for treatment of renal osteodystrophy. In physiologic doses, it predictably corrects many of the clinical and biochemical abnormalities associated with this disorder.  相似文献   

7.
The C(23) epimers of 1alpha,23,25(OH)3-24-oxovitamin D3, a major natural metabolite of the secosteroid hormone, 1alpha,25(OH)2D3, were chemically synthesized for the first time. The metabolite was synthesized by palladium coupling of the appropriate CD ring analog with an A ring enyne. Various approaches from quinic acid to the A ring precursors were explored, and a new route to the A ring enyne from quinic acid was developed. The C(23) stereochemistry of the natural 1alpha,23,25(OH)3-24-oxovitamin D3 produced in neonatal human keratinocytes was determined to be S on the basis of the 1H NMR and the HPLC data. The biological activity of 1alpha,23(S), 25(OH)3-24-oxovitamin D3 in primary cultures of bovine parathyroid cells was determined by comparing the potency of this metabolite to that of 1alpha,25(OH)2D3 in suppression of parathyroid hormone (PTH) secretion. The results indicate that 1alpha,23(S), 25(OH)3-24-oxovitamin D3 potently suppressed PTH secretion even at concentrations as low as 10(-)12 M and is equipotent with 1alpha, 25(OH)2D3. The high activity of 1alpha,23(S),25(OH)3-24-oxovitamin D3 cannot be explained on the basis of its affinity for the vitamin D receptor as this metabolite was found to be 10 times less effective than radioinert 1alpha,25(OH)2D3 in blocking the uptake and receptor binding of [3H]-1alpha,25(OH)2D3 in intact parathyroid cells. Further studies are required to explain the molecular basis for the activity of 1alpha,23(S),25(OH)3-24-oxovitamin D3 in its ability to suppress PTH secretion. In summary, our present study indicates that the C(23) stereochemistry of the natural 1alpha,23, 25(OH)3-24-oxovitamin D3 is S and this metabolite is equipotent to 1alpha,25(OH)2D3 in suppressing PTH secretion.  相似文献   

8.
9.
10.
It has recently been shown that in the rat, dihydrotachysterol (DHT) is extensively metabolized in the side-chain in vivo along pathways similar to those of vitamin D. In addition 25-hydroxy-DHT2 [25OHDHT2] is hydroxylated at C1, producing both 1 alpha- and 1 beta- hydroxy compounds. An in vivo study in 1988 demonstrated that in normal adult subjects receiving oral DHT2, plasma 1 alpha,25-dihydroxyvitamin D [1,25-(OH)2D] concentrations fell, but with unchanged plasma PTH levels. Down-regulation of 1,25-(OH)2D3 production by 25-(OH)DHT2 or some other unknown metabolite was also suggested as an explanation for these observations. To investigate whether either of the newly characterized 1 alpha,25- or 1 beta,25-(OH)2DHT2 was formed in vivo in normal man, DHT2 (approximately 1 mg/day, orally) was administered to healthy volunteers (three males and one female). Plasma was analyzed by high performance liquid chromatography and gas chromatography-mass spectrometry, demonstrating the formation of both 1 alpha,25- and 1 beta,25-(OH)2DHT2 in vivo in normal human subjects. Plasma levels of 1,25-(OH)2D3, PTH, ionized and total calcium, inorganic phosphate, and alkaline phosphatase were monitored. The plasma concentrations of DHT2, 25OHDHT2, and 1 alpha,25- and 1 beta,25-(OH)2DHT2 were measured by gas chromatography-mass spectrometry. In all volunteers, plasma ionized calcium increased slightly during DHT2 administration; 1,25-(OH)2D3 and PTH concentrations fell. Plasma levels of DHT2 and its metabolites rose over the same period. The average fall in the level of plasma 1,25-(OH)2D (60-70 pmol/L) was mirrored by a rise in the concentration of 1 alpha,25-(OH)2DHT2 (550 pmol/L). This ratio is appropriate, because it has previously been shown that in a reconstituted COS cell, 1 alpha,25-(OH)2DHT3 has roughly one tenth the potency of 1,25-(OH)2D3. At maximum concentration, the ratios of DHT2/25OHDHT2/1 beta,25-(OH)2DHT2/1 alpha,25-(OH)2DHT2 were approximately 10:1:2:0.1. The concentration of 1 beta,25-(OH)2DHT2 was greater than that of 25OHDHT2, and the ratio of 1 alpha,25- to 1 beta,25-(OH)2DHT2 (1:20) was substantially lower than that in rat plasma (3:10). The data presented here suggest that the active DHT2 metabolite in man is 1 alpha,25-(OH)2DHT2 and that the fall in plasma 1,25-(OH)2D seen during DHT therapy may be partly the result of suppressed PTH secretion.  相似文献   

11.
12.
Vitamin D3 and its hydroxylated metabolites are normally in thermal equilibrium with their previtamin D isomers. To evaluate the biologic activity of 1 alpha, 25-dihydroxyprevitamin D3, we synthesized 19-nor analogs of 1 alpha, 25-dihydroxy(pre)vitamin D3 because the absence of a C19 methylene group prevents the isomerization of these analogs. The affinity of 1 alpha, 25-(OH)2D3-19-nor-D3 for the intestinal vitamin D receptor and plasma vitamin D binding protein was mildly decreased [30 and 20% of the affinity of 1 alpha, 25-(OH)2D3, respectively], but the affinity of 1 alpha, 25-(OH)2-19-nor-previtamin D3 was only 1 and 6% of that of 1 alpha, 25-(OH)2D3 for the receptor and DBP, respectively. The in vitro effects on human promyeloid leukemia (HL-60 cell) differentiation and osteocalcin secretion by human osteosarcoma (MG-63) cells by 1 alpha, 25-(OH)2-19-nor-D3 were nearly identical to those of 1 alpha-25-(OH)2D3, whereas 19-nor-previtamin D3 showed poor activity (2%). The in vivo calcemic effects of both analogs, studied in vitamin D-deficient chicks treated for 10 consecutive days with the analogs, showed no activity of the previtamin D3 analog and reduced calcemic effects (< or = 10%) of 1 alpha, 25-(OH)2-19-nor-D3. We conclude that the previtamin D form of 1 alpha, 25-(OH)2D3 has lost most of its biologic activity in vitro and in vivo.  相似文献   

13.
OBJECTIVES: To investigate the effects of lead and cadmium on the metabolic pathway of vitamin D3. METHODS: Blood and urinary cadmium and urinary total proteins were measured in 59 smelter workers occupationally exposed to lead and cadmium. In 19 of these workers, the plasma vitamin D3 metabolites, (25-hydroxycholecalciferol (25 OHD3), 24R, 25-dihydroxycholecalciferol (24R,25(OH)2D3) and 1 alpha,25-dihydroxycholecalciferol (1 alpha, 25(OH)2D3)) were measured together with blood lead. Vitamin D3 metabolites were measured by radioimmunoassay, (RIA), lead and cadmium by atomic absorption spectrophotometry, and total proteins with a test kit. RESULTS: Ranges for plasma 25(OH)D3, 24R,25(OH)2D3 and 1 alpha,25(OH)2D3 were 1.0-51.9 ng/ml, 0.6-5.8 ng/ml, and 0.1-75.7 pg/ml, respectively. Ranges for blood lead were 1-3.7 mumol/l, (21-76 micrograms/dl), blood cadmium 6-145 nmol/l, and urinary cadmium 3-161 nmol/l. Total proteins in random urine samples were 2.1-32.6 mg/dl. Concentrations of lead and cadmium in blood showed no correlation (correlation coefficient -0.265) but there was a highly significant correlation between blood and urinary cadmium. Concentrations for 24R,25(OH)2D3 were depressed below the normal range as blood and urinary cadmium increased, irrespective of lead concentrations. High cadmium concentrations were associated with decreased plasma 1 alpha,25(OH)2D3 when lead concentrations were < 1.9 mumol/l and with above normal plasma 1 alpha,25(OH)2D3 when lead concentrations were > 1.9 mumol/l, Kruskal-Wallis analysis of variance (K-W ANOVA) chi 2 = 10.3, p = 0.006. Plasma 25(OH)D3 was negatively correlated with both urinary total proteins and urinary cadmium, but showed no correlation with plasma 24R,25(OH)2D3, 1 alpha,25(OH)2D3, blood lead, or blood cadmium. CONCLUSION: Continuous long term exposure to cadmium may result in a state of equilibrium between blood and urinary cadmium. Cadmium concentrations in blood could be predicted from the cadmium concentration of the urine, (regression coefficient +0.35 SE 0.077). Exposure to cadmium alone decreased the concentrations of 1 alpha,25(OH)2D3 and 24R,25(OH)2D3, whereas exposure to both cadmium and lead increased the concentrations of 1 alpha,25(OH)2D3. It has been suggested that cadmium and lead interact with renal mitochondrial hydroxylases of the vitamin D3 endocrine complex. Perturbation of the vitamin D metabolic pathway by cadmium may result in health effect, such as osteoporosis or osteomalacia, risks which are possibly increased in the presence of lead.  相似文献   

14.
Although prostatic cancer is often viewed as an androgen-dependent malignancy, a number of other hormones including 1alpha, 25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] are now recognized to modulate its growth and differentiated phenotype. Seven different continuous human prostatic carcinoma cell lines were examined for the presence of biologically active receptors for 1alpha,25(OH)2D3. All seven lines were found to contain mRNA for the vitamin D receptor using an RNase protection assay. Six of the seven cell lines were found to have high-affinity saturable binding sites for 1alpha,25(OH)2D3. The seventh line was found to contain vitamin D receptors by sucrose gradient analysis. All seven lines were found to express 24-hydroxylase activity by a HPLC assay that measures the conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3. 24-Hydroxylase activity was up-regulated in all seven cell lines by preincubation with 1alpha,25(OH)2D3. In the presence of fetal bovine serum, the growth of four of the seven cell lines was inhibited. In the majority of cell lines growth inhibition was related not only to the number of receptors per cell, but also in inverse proportion to the 24-hydroxylase activity of each cell line. The ubiquitous presence of vitamin D receptor and 24-hydroxylase activity in human prostatic carcinoma cells suggests new alternatives for the pharmacological treatment of advanced prostatic cancer and implies that chemoprevention strategies could also make use of this endocrine axis.  相似文献   

15.
The secosteroid hormone, 1,25-dihydroxyvitamin D [1,25(OH)2D], plays a crucial role in normal bone growth, calcium metabolism, and tissue differentiation. The key step in the biosynthesis of 1,25(OH)2D is its 1 alpha-hydroxylation from 25-hydroxyvitamin D (25-OHD) in the kidney. Because its expression in the kidney is very low, we cloned and sequenced cDNA for 25-OHD-1 alpha-hydroxylase (P450c1 alpha) from human keratinocytes, in which 1 alpha-hydroxylase activity and mRNA expression can be induced to be much greater. P450c1 alpha mRNA was expressed at much lower levels in human kidney, brain, and testis. Mammalian cells transfected with the cloned P450c1 alpha cDNA exhibit robust 1 alpha-hydroxylase activity. The identity of the 1,25(OH)2D3 product synthesized in transfected cells was confirmed by HPLC and gas chromatography-mass spectrometry. The gene encoding P450c1 alpha was localized to chromosome 12, where the 1 alpha-hydroxylase deficiency syndrome, vitamin D-dependent rickets type 1 (VDDR-1), has been localized. Primary cultures of human adult and neonatal keratinocytes exhibit abundant 1 alpha-hydroxylase activity, whereas those from a patient with VDDR-1 lacked detectable activity. Keratinocyte P450c1 alpha cDNA from the patient with VDDR-1 contained deletion/frameshift mutations either at codon 211 or at codon 231, indicating that the patient was a compound heterozygote for two null mutations. These findings establish the molecular genetic basis of VDDR-1, establish a novel means for its study in keratinocytes, and provide the sequence of the key enzyme in the biological activation of vitamin D.  相似文献   

16.
We assessed the possibility that ipriflavone treatment might result in bone restoration in immobilized rats. We also investigated the effect of combined treatment with ipriflavone and vitamin D3 on the bone. Male Sprague-Dawley rats, 6 weeks of age, were subjected to unilateral sciatic neurectomy. Three weeks after the operation, ipriflavone (100 mg/kg), 1 alpha-hydroxyvitamin D3 [1 alpha (OH)D3, 25 ng/kg], or both ipriflavone and 1 alpha (OH)D3 were orally administered every day for 12 or 24 weeks. After 12 weeks of treatment, only the group receiving combined treatment with ipriflavone and 1 alpha (OH)D3 showed increases in total femur calcium content (+16.4%, compared with the control). After 24 weeks, both animals treated with ipriflavone alone and those that had received the combination of ipriflavone and 1 alpha (OH)D3 showed significant increases in femur calcium content (+18.0% and +23.8%, respectively). In these treatment groups, X-ray analysis revealed an increase in bone mineral density over the entire length of the femur, and an increase in cortical diameter at the midshaft without affecting medullary width. Administration of 1 alpha (OH)D3 (25 ng/kg) alone had no effect. Body weight, femur length, and serum markers of calcium and bone metabolism were not affected in any group. We evaluated the relationship between ipriflavone and vitamin D3 in bone cells in a culture system using rat bone marrow stromal cells in which the cells subsequently form mineralized bone-like tissue. Continuous treatment with ipriflavone (10(-5) M) for 21 days resulted in an increase in osteocalcin secretion, and enhanced its response to 1 alpha, 25-dihydroxyvitamin D3 (10(-11) M-10(-8 M)). These findings indicate that ipriflavone treatment increases the femoral bone mass in immobilized rats. In addition, a low dose of 1 alpha (OH)D3, which did not induce hypercalcemia, in combination with ipriflavone, augmented the stimulatory effect of ipriflavone alone on the bone mass, possibly due to a direct effect of each agent on osteoblastic cells.  相似文献   

17.
After intravenous administration of the vitamin D3 analog, 22-oxacalcitriol (OCT), to normal rats plasma metabolites were investigated by HPLC, GC-MS and LC-MS. Five side-chain oxidation metabolites, 24R(OH)OCT, 24S(OH)OCT, (25R)-26(OH)OCT, (25S)-26(OH)OCT and 24oxoOCT, were identified by comparison with the corresponding synthetic compounds. These side-chain oxidation metabolites were similar to those of calcitriol [1alpha,25(OH)2 vitamin D3] described previously. Besides these five metabolites, two unique side-chain cleavage metabolites, 20S(OH)-hexanor-OCT and 17,20S(OH)2-hexanor-OCT, were identified as main metabolites in plasma by GC-MS and LC-MS using a specific chemical reaction. Our studies suggest that OCT is extensively metabolized and circulates in blood as a number of metabolites as well as unchanged OCT. This metabolism includes both unique pathways of C23-O22 cleavage and 17-hydroxylation, in addition to the side-chain oxidation metabolites similar to those of 1alpha,25-(OH)2D3.  相似文献   

18.
Growth plate cartilage cell express receptors for, and are affected by both IGF-I and 1 alpha, 25(OH)2D3. The studies were undertaken to investigate interaction between these two hormone systems, that is, (i) to study effects of 1 alpha, 25(OH)2D3 on IGF-type 1 receptors (IGFIR), on IGF-I stimulated cell replication, colony formation, and on alkaline phosphatase activity (AP), and conversely, (ii) to study the effect of IGF-I on vitamin D receptor (VDR) expression on 1 alpha, 25(OH)2D3 stimulated growth parameters and on AP activity. Freshly isolated rat tibial chondrocytes were grown in monolayer cultures, (serum-free) or in agarose stabilized suspension cultures (0.1% FCS). Vitamin D receptor and IGFIR were visualized by immunostaining with the monoclonal antibody (mAb) 9A7 gamma and mAb alpha IR3, respectively, and quantitated by RT-PCR for mRNA and by Scatchard analysis using [3H]-1,25(OH)2D3 and [125I]-alpha IR3. Cell proliferation was measured by [3H]-thymidine incorporation, growth curves in monolayer cultures, and by colony formation in agarose-stabilized suspension cultures. IGF-I dose-dependently increased [3H]-thymidine incorporation. 1 alpha, 25(OH)2D3, but not 1 beta, 25(OH)2D3 was stimulatory at low ((10-12 M) and slightly inhibitory at high (10-8 M) concentrations. The effect of IGF-I was additive to that of 1 alpha, 25 (OH)2D3 [IGF-I 60 ng/ml, 181 +/- 12.7; 1 alpha, 25(OH)2D3 10(-12) M, 181 +/- 9.8%, IGF-I + 1 alpha, 25(OH)2D3, 247 +/- 16.7%, P < 0.05 by ANOVA] and specifically obliterated by polyclonal IGF-I antibody (AB-1). Interaction could also be confirmed in suspension cultures. IGFIR mRNA and [125I]-alphaIR3 binding was increased by low (10(-12) m) but not by high (10(-8) M) concentrations of 1 alpha, 25(OH)2D3. Homologous up-regulation by IGF-I (60 ng/ml) was specifically inhibited by AB-1 and markedly amplified by coincubation with 1 alpha, 25(OH)2D3 (10(-12)m). Immunostaining with alpha IR3 showed specific IGFIR expression in rat growth cartilage, but not liver tissue. Stimulation of chondrocytes with 1 alpha, 25(OH)2D3 or IGF-I suggested some increase of receptor expression in single cells, but the predominant effect was increased recruitment of receptor positive cells, Vitamin D receptor expression was markedly stimulated (fourfold) by IGF-I (60 ng/ml), but not IGF-II and inhibited by actinomycin D. This study shows that IGF-I and 1 alpha, 25(OH)2D3 mutually up-regulate their respective receptors in growth plate chondrocytes. In parallel, they have additive effects on cell proliferation and colony formation suggesting independent effector pathways.  相似文献   

19.
20.
Vitamin D is best known for its role in the regulation of calcium and bone metabolism. The effects of the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25 (OH)2D3), are mediated by binding to a specific intracellular vitamin D receptor, which is present in most tissues including the skin where it regulates the growth of epidermal cells. Calcipotriol is a synthetic analogue of 1,25(OH)2D3. In vitro the activity of calcipotriol is comparable to that of 1,25(OH)2D3. In vivo, however, the risk of calcipotriol changing calcium metabolism is greatly reduced. Animal studies have established that calcipotriol is 100-200 times less calcaemic than 1,25(OH)2-D3. This low calcaemic activity is mainly due to the rapid metabolism of calcipotriol. This pharmacological profile makes calcipotriol an ideal candidate for topical treatment of hyperproliferative skin disorders, such as psoriasis. This paper reviews the clinical experience with calcipotriol in psoriasis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号