共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices
The n-type tungsten oxide (WO3) polycrystalline thin films have been prepared at an optimized substrate temperature of 250 °C by spray pyrolysis technique. Precursor solution of ammonium tungstate ((NH4)2WO4) was sprayed onto the well cleaned, pre-heated fluorine doped tin oxide coated (FTO) and glass substrates with a spray rate of 15 ml/min. The structural, surface morphological and optical properties of the as-deposited WO3 thin films were studied. Mott-Schottky (M-S) studies of WO3/FTO electrodes were conducted in Na2SO4 solution to identify their nature and extract semiconductor parameters. The electrochromic properties of the as-deposited and lithiated WO3/FTO thin films were analyzed by employing them as working electrodes in three electrode electrochemical cell using an electrolyte containing LiClO4 in propylene carbonate (PC) solution. 相似文献
2.
Xian Ming Wu Xin Hai LiMing Fei Xu Yun He ZhangZe Qiang He Zhuo Wang 《Materials Research Bulletin》2002,37(14):2345-2353
Cathode material LiMn2O4 thin films were prepared by aqueous solution deposition using lithium acetate and manganese acetate as starting materials. The structures, morphologies, and the first discharge specific capacity of the thin films were investigated as a function of annealing temperature and time. The cycling properties of the thin films were also examined. The results show that LiMn2O4 thin films prepared by this method are homogenous and crack-free. The thin film annealed at 750°C for 30 min has good rechargeability. The capacity loss per cycle is about 0.05% after being cycled 100 times. 相似文献
3.
La0.67Ca0.33MnO3 (LCMO) thin films were successfully fabricated by a DC magnetron sputtering technique on Si (1 0 0) substrates from chemically synthesized compacted powders. Powders of proper stochiometry composites were synthesized by a novel chemical technique [D.R. Sahu, B.K. Roul, P. Pramanik, J.L. Huang, Physica B 369 (2005) 209] and were found to be nanosized (≈40-50 nm). The sinterability of the powders were improved significantly due to their large surface area with a reduction of sintering temperature (up to 500 °C) as compared to the powders prepared by other solid-state reaction route. Bulk LCMO targets were prepared and preliminary structural and magnetic properties of target were investigated for colossal magnetoresistance (CMR) properties. Films deposition parameters like DC power, gas flow rate, deposition time, etc., were critically optimized to achieve desired thickness of film using above LCMO target by DC magnetron sputtering. LCMO films fabricated on Si (1 0 0) substrates showed enhanced magnetoresistance (MR) at low temperature. Maximum MR of about 1000% was observed at 100 K. Paramagnetic to ferromagnetic transitions were observed in films below room temperature and were found at approximately 240 K. However, as compared to bulk target prepared by a chemical route, it was found that Curie temperature (Tc) and MR response of bulk target were higher than the thin films. Preliminary point chemical analysis revealed the deficiency of Ca2+ ions in CMR films. 相似文献
4.
Epitaxial trilayer films of La0.67Sr0.33MnO3 (LSMO)/La0.75MnO3 (L0.75MO)/La0.67Sr0.33MnO3 (LSMO) have been prepared on (0 0 1) oriented LaAlO3 substrates by dc magnetron sputtering. The structure and MR are studied. All as-deposited trilayer films exhibit a semiconductor to metal transition at temperature ranging from 116 to 185 K. The MR is also shown to be dependent on the thickness of the middle oxide layer. A maximum MR value of 32% (ΔR/R0) has been obtained at 132 K under 0.4 T magnetic field for a LSMO (300 nm)/L0.75MO (70 nm)/LSMO (300 nm) trilayer film. The MR of trilayer film prefers to that of both LSMO and L0.75MO single layer films. 相似文献
5.
S.S. Fouad G.B. Sakr I.S. Yahia D.M. Abdel Basset 《Materials Research Bulletin》2011,46(11):2141-2146
Stoichiometric thin film samples of the ternary ZnGa2Te4 defect chalcopyrite compound were prepared and characterized by X-ray diffraction technique. The elemental chemical composition of the prepared bulk material as well as of the as-deposited film was determined by energy-dispersive X-ray spectrometry. ZnGa2Te4 thin films were deposited, by conventional thermal evaporation technique onto highly cleaned glass substrates. The X-ray and electron diffraction studies revealed that the as-deposited and the annealed ZnGa2Te4 films at annealing temperature ta ≤ 548 K are amorphous, while those annealed at ta ≥ 573 K (for 1 h), are polycrystalline. The optical properties of the as-deposited films have been investigated for the first time at normal incidence in the spectral range from 500 to 2500 nm. The refractive index dispersion in the transmission and low absorption region is adequately described by the Wemple–DiDomenico single oscillator model, whereby, the values of the oscillator parameters have been calculated. The analysis of the optical absorption coefficient revealed an in-direct optical transition with energy of 1.33 eV for the as-deposited sample. This work suggested that ZnGa2Te4 is a good candidate in solar cell devices as an absorbing layer. 相似文献
6.
Capacitor-like Au/BiFeO3/SrRuO3 thin film with (1 1 1) orientation was grown on the SrTiO3 (1 1 1) substrate by radio frequency magnetic sputtering. It shows a resistive switching behavior, where a stable hysteresis in current–voltage curve was well developed by applying an optimum voltage at room temperature, and it reached the saturation at a bias voltage of 8 V. The Child's law in Vmax → 0 direction and the interface-limited Fowler–Nordheim tunneling in 0 → Vmax direction, together with the polarization reversal in the BiFeO3 barrier, are shown to involve in the observed resistive hysteresis. 相似文献
7.
We report the effect of film thickness on transport and magnetotransport in La0.7Pb0.3MnO3 (LPMO) manganite films grown on single crystalline LaAlO3 substrate using chemical solution deposition (CSD) technique. AFM measurements show the island type grain growth responsible for the strain at the film-substrate interface, while structural studies using XRD shows the presence of thickness dependent compressive strain in the films which modifies the transport and magnetotransport in LPMO/LAO films. The observation of low temperature resistivity minima behavior in all the LPMO films has been explained in the context of electron-electron scattering mechanism. The ZFC-FC magnetization measurements show the glassy state behavior below Tmin. 相似文献
8.
Michio Mikawa Toshihiro Moriga Yukinori Misaki Ichiro Nakabayashi 《Materials Research Bulletin》2005,40(6):1052-1058
Transparent conducting oxide (TCO) films in the ZnO-In2O3 system were prepared by a pulsed laser deposition method. A target that consists of the mixture of ZnO and In2O3 powders was used. Influences of the target composition x (x = [Zn]/([Zn] + [In])) and heater temperature on structural, electrical and optical properties of the TCO films were examined. Introduction of oxygen gas into the chamber during the deposition was necessary for improvement in the transparency of the deposited films. The amorphous phase was observed for a wide range of x = 0.20-0.60 at 110 °C. Minimum resistivity was 2.65 × 10−4 Ω cm at x = 0.20. The films that showed the minimum resistivity had an amorphous structure and the composition shifted toward larger x, as the substrate temperature increased. The films were enriched in indium compared to the target composition and the cationic In/Zn ratio increased as the substrate temperature was increased. 相似文献
9.
Li-rich spinel-type lithium manganate (SC) coated LiMn2O4 composites were prepared and characterized by XRD, SEM, FT-IR, ICP, etc. Their charge/discharge behaviors were studied between 3.0 and 4.3 V at 40 mA g−1 under room temperature, and the results showed that SC coated on surface of LiMn2O4 could improve cycling stability of composite electrodes. The composite (S1) containing 4.8 wt% of SC exhibited noticeably improved cycling stability, whereas the initial specific capacity was very close to that of LiMn2O4. 相似文献
10.
Ru-Bing Zhang Chun-Sheng Yang Gui-Pu Ding Jie Feng 《Materials Research Bulletin》2005,40(9):1490-1496
BST thin films have been investigated as potential candidates for use in frequency agile microwave circuit devices. Stoichiometric (Ba1 − xSrx)TiO3 (BST) thin films have been prepared on Pt/SiO2/Si substrates using sol-gel method. The BST films were characterized by X-ray fluorescence (XRF) spectroscopy analysis, X-ray diffraction (XRD), scanning electron microscope (SEM) and electrical measurements. The relationships of processing parameters, microstructures, and dielectric properties are discussed. The results show that the films exhibit pure perovskite phase through rapid thermal anneal at 700 °C and their grain sizes are about 20-40 nm. The dielectric constants of BST5, BST10, BST15 and BST20 are 323, 355, 382 and 405, respectively, at 80 kHz. 相似文献
11.
The photosensitive lanthanum-doped lead zirconate titanate (PLZT) gel films were prepared by chemical modification with acetylacetone (AcAcH), and their fourier transform infrared (FT-IR) spectra and ultraviolet visible (UV-Vis) spectra were measured. The results show that the chelate rings of AcAcH with Ti or Zr are formed in the PLZT gel films. With irradiation of UV light, the chelate rings are photolyzed, and lead to a change of the solubility of the PLZT gel films in methanol. Transmission electron microscope (TEM) observations show that the perovskite phase is crystallized in PLZT thin film after heat treatment at 700 °C, whose grain sizes are less than or equal to 60 nm. The PLZT thin films exhibited hysteresis loops and good fatigue properties. 相似文献
12.
Sudipto Pal 《Materials Research Bulletin》2009,44(2):355-2818
Reversible transformation of silver oxide and metallic nanoparticles inside a relatively porous silica film has been established. Annealing of Ag-doped films in oxidizing (air) atmosphere at 450 °C yielded colorless films containing AgOx. These films were turned yellow when heated in H2-N2 (reducing atmosphere) due to the formation of Ag nanoparticles. This yellow coloration (due to nano Ag0) and bleaching (conversion of Ag0 → Ag+) are reversible. Optical and photoluminescence spectra are well consistent with this coloration and bleaching. The soaking test of the air-annealed film in Na2S2O3 solution supports the presence of Ag+. Grazing incidence X-ray diffraction and transmission electron microscopy studies reveal the formation of Ag-oxides and Ag nanoparticles in the oxidized and reduced films, respectively. 相似文献
13.
A new material constituted by cerium dioxide highly dispersed on activated carbon (CeO2/AC) was prepared by an impregnation method using cerium(III) nitrate as CeO2 precursor. In order to evaluate the degree of ceria dispersion on the carbon support, CeO2/AC was characterized by a number of techniques: thermogravimetry coupled with a mass spectrometer (TG-MS), N2 adsorption at 77 K, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR) and transmission electron microscopy (TEM). The analysis of the decomposition process under inert atmosphere indicated that cerium nitrate decomposes at 440-460 K, with the evolution of NO. Furthermore, this process produces an additional oxidation of the carbon surface (with evolution of N2O) and the subsequent onset of new oxygen surface groups, detected by means of temperature-programmed desorption. The ceria deposition process takes place with a decrease in the N2 adsorption capacity of the starting carbon support, and the analysis of the pore size distribution showed that the majority of ceria particles are situated at the most internal part of the carbon porosity. The temperature-programmed reduction profile of CeO2/AC was very different to that shown by unsupported CeO2, with only one continuous reduction process at low temperatures (800-900 K). Finally, TEM pictures gave direct evidence that ceria is highly dispersed on the carbon surface, with a narrow CeO2 particle distribution centred around 3 nm. 相似文献
14.
The Pb(Zr0.80Ti0.20)O3 (PZT) thin films with and without a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by radio frequency (rf) magnetron sputtering method. The PbO buffer layer improves the microstructure and electrical properties of the PZT thin films. High phase purity and good microstructure of the PZT thin films with a PbO buffer layer were obtained. The effect of the PbO buffer layer on the ferroelectric properties of the PZT thin films was also investigated. The PZT thin films with a PbO buffer layer possess better ferroelectric properties with higher remnant polarization (Pr = 25.6 μC/cm2), and lower coercive field (Ec = 60.5 kV/cm) than that of the films without a PbO buffer layer (Pr = 9.4 μC/cm2, Ec = 101.3 kV/cm). Enhanced ferroelectric properties of the PZT thin films with a PbO buffer layer is attributed to high phase purity and good microstructure. 相似文献
15.
C.S. Xiong Y.H. Xiong Y.B. JiaZ.P. Jian G.E. ZhouL. Pi Y.T. MaiZ.C. Xia S.L. Yuan 《Materials Research Bulletin》2003,38(7):1183-1191
La0.67Sr0.33MnO3−δ films, fabricated on (1 1 1) LaAlO3 single-crystal substrates using a direct current magnetron sputtering technique, are demonstrated by X-ray diffraction patterns and pole figures to be high quality epitaxial films and there is a perfect matching relationship between the films and the substrates. We observed an obvious difference of the electronic-magnetic transportation properties among films sputtered on (1 1 1), (1 0 0) and (1 1 0) LaAlO3 substrates, respectively. A mechanism for the difference is discussed briefly. 相似文献
16.
Self-propagation high-temperature synthesis (SHS) was applied for the synthesis of low-cost Si3N4 powder. The powder was purified and ground until its particle size reached submicron levels and its purity reached 98%. Using this pretreated powder, with α/β = 60/40 content, fully dense Si3N4 ceramics, having improved mechanical properties, were obtained by liquid-phase sintering in the presence of (Y, La)2O3-AlN. The mechanical properties achieved finally were as follows: strength, 784 MPa; hardness, 15.1 GPa; and fracture toughness, 5.2 MPa m0.5. The behaviors of the SHS-Si3N4 powders before and after the pretreatment were compared. The relation between microstructure and mechanical properties of the sintered specimens and the effect of different β content in the powder on the sintering process of Si3N4 were also studied. 相似文献
17.
Synthesis and upconversion luminescence properties of the new BaGd2(MoO4)4:Yb3+,Er3+ phosphor were reported in this paper. The phosphor powder was obtained by the traditional high temperature solid-state method, and its phase structure was characterized by the XRD pattern. Based on the upconversion luminescence properties studies, it is found that, under 980 nm semiconductor laser excitation, BaGd2(MoO4)4:Yb3+,Er3+ phosphor exhibits intense green upconversion luminescence, which is ascribed to 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transition of Er3+. While the observed much weaker red emission is due to the non-radiative relaxation process of 4S3/2 → 4F9/2 and 4F9/2 → 4I15/2 transition originating from the same Er3+. The concentration quenching effects for both Yb3+ and Er3+ were found, and the optimum doping concentrations of 0.5 mol% Yb3+ and 0.08 mol% Er3+ in the new BaGd2(MoO4)4 Gd3+ host were established. 相似文献
18.
SnO2-TiO2 composite thin films were fabricated on soda-lime glass with sol-gel technology. By measuring the contact angle of the film surface and the degradation of methyl orange, we studied the influence of SnO2 doping concentration, heat-treatment temperature and film thickness on the super-hydrophilicity and photocatalytic activity of the composite films. The results indicate that the doping of SnO2 into TiO2 can improve their hydrophilicity and photocatalytic activity, and the composite film with 1-5 mol% SnO2 and heat-treated at 450°C is of super-hydrophilicity. The optimal SnO2 concentration for the photocatalytic activity is 10 mol% and larger film thickness is helpful to reduce the contact angle of the composite films. 相似文献
19.
In microwave tunable devices, one of the major challenges encountered is the simultaneous minimization of the material's dielectric loss and maximization of dielectric tunability. In this work, Ba0.6Sr0.4TiO3 thin film with the thickness of 300 nm was deposited on Pt/SiO2/Si substrates using radio-frequency magnetron sputtering technique, and its dielectric properties were investigated. Due to the high temperature annealing process at substrate temperature of 600 °C, well-crystallized Ba0.6Sr0.4TiO3 film was deposited. The dielectric constant and dielectric loss of the film at 100 kHz are 300 and 0.033, respectively. Due to the good crystallinity of the Ba0.6Sr0.4TiO3 films deposited by radio-frequency magnetron sputtering, high dielectric tunability up to 38.3% is achieved at a low voltage of 4.5 V. 相似文献
20.
Iron vanadate (FeVO4) nanoparticles were synthesized by simple co-precipitation method using various surfactants such as ethylene glycol, polyethylene glycol 200 and polyethylene glycol 400 as the structure directing agents. Systematic investigations on the structural, morphological and magnetic properties of the materials have been studied. The lattice constants of the triclinic structure of FeVO4 were calculated from the X-ray diffraction (XRD) analyses. The average grain size was estimated to be around 35 nm, which increased with increasing the calcination temperature. The stretching and bending vibrations of Fe-O were evaluated from the FT-IR spectra. Using VSM magnetometer, magnetic property was investigated through magnetic susceptibility and magnetization measurements. FeVO4 exhibits two magnetic ordering temperatures at T ≈ 20 K and 14 K, which is due to two different chemical environments of Fe ligands such as octahedral FeO6 and trigonal bipyramidal FeO5 in a six-column doubly bent chain, respectively. 相似文献