首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.  相似文献   

2.
TRPV1 and TRPV4, members of the transient receptor potential vanilloid family, are multimodal ion channels activated by various stimuli, including temperature and chemicals. It has been demonstrated that TRPV channels function as tetramers; however, the dynamics of the diffusion, oligomerization, and endocytosis of these channels in living cells are unclear. Here we undertook single-molecule time-lapse imaging of TRPV1 and TRPV4 in HEK 293 cells. Differences were observed between TRPV1 and TRPV4 before and after agonist stimulation. In the resting state, TRPV4 was more likely to form higher-order oligomers within immobile membrane domains than TRPV1. TRPV1 became immobile after capsaicin stimulation, followed by its gradual endocytosis. In contrast, TRPV4 was rapidly internalized upon stimulation with GSK1016790A. The selective loss of immobile higher-order oligomers from the cell surface through endocytosis increased the proportion of the fast-diffusing state for both subtypes. With the increase in the fast state, the association rate constants of TRPV1 and TRPV4 increased, regenerating the higher-order oligomers. Our results provide a possible mechanism for the different rates of endocytosis of TRPV1 and TRPV4 based on the spatial organization of the higher-order structures of the two TRPV channels.  相似文献   

3.
Lens water transport generates a hydrostatic pressure gradient that is regulated by a dual-feedback system that utilizes the mechanosensitive transient receptor potential vanilloid (TRPV) channels, TRPV1 and TRPV4, to sense changes in mechanical tension and extracellular osmolarity. Here, we investigate whether the modulation of TRPV1 or TRPV4 activity dynamically affects their membrane trafficking. Mouse lenses were incubated in either pilocarpine or tropicamide to alter zonular tension, exposed to osmotic stress, or the TRPV1 and TRPV4 activators capsaicin andGSK1016790A (GSK101), and the effect on the TRPV1 and TRPV4 membrane trafficking in peripheral fiber cells visualized using confocal microscopy. Decreases in zonular tension caused the removal of TRPV4 from the membrane of peripheral fiber cells. Hypotonic challenge had no effect on TRPV1, but increased the membrane localization of TRPV4. Hypertonic challenge caused the insertion of TRPV1 and the removal of TRPV4 from the membranes of peripheral fiber cells. Capsaicin caused an increase in TRPV4 membrane localization, but had no effect on TRPV1; while GSK101 decreased the membrane localization of TRPV4 and increased the membrane localization of TRPV1. These reciprocal changes in TRPV1/4 membrane localization are consistent with the channels acting as mechanosensitive transducers of a dual-feedback pathway that regulates lens water transport.  相似文献   

4.
The acid-sensing ion channels ASIC1 and ASIC2, as well as the transient receptor potential vanilloid channels TRPV1 and TRPV4, are proton-gated cation channels that can be activated by low extracellular pH (pHe), which is a hallmark of the tumor microenvironment in solid tumors. However, the role of these channels in the development of skin tumors is still unclear. In this study, we investigated the expression profiles of ASIC1, ASIC2, TRPV1 and TRPV4 in malignant melanoma (MM), squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and in nevus cell nevi (NCN). We conducted immunohistochemistry using paraffin-embedded tissue samples from patients and found that most skin tumors express ASIC1/2 and TRPV1/4. Striking results were that BCCs are often negative for ASIC2, while nearly all SCCs express this marker. Epidermal MM sometimes seem to lack ASIC1 in contrast to NCN. Dermal portions of MM show strong expression of TRPV1 more frequently than dermal NCN portions. Some NCN show a decreasing ASIC1/2 expression in deeper dermal tumor tissue, while MM seem to not lose ASIC1/2 in deeper dermal portions. ASIC1, ASIC2, TRPV1 and TRPV4 in skin tumors might be involved in tumor progression, thus being potential diagnostic and therapeutic targets.  相似文献   

5.
Ion channels play important roles in chondrocyte mechanotransduction. The transient receptor potential vanilloid (TRPV) subfamily of ion channels consists of six members. TRPV1-4 are temperature sensitive calcium-permeable, relatively non-selective cation channels whereas TRPV5 and TRPV6 show high selectivity for calcium over other cations. In this study we investigated the effect of time in culture and passage number on the expression of TRPV4, TRPV5 and TRPV6 in articular chondrocytes isolated from equine metacarpophalangeal joints. Polyclonal antibodies raised against TRPV4, TRPV5 and TRPV6 were used to compare the expression of these channels in lysates from first expansion chondrocytes (P0) and cells from passages 1-3 (P1, P2 and P3) by western blotting. TRPV4, TRPV5 and TRPV6 were expressed in all passages examined. Immunohistochemistry and immunofluorescence confirmed the presence of these channels in sections of formalin fixed articular cartilage and monolayer cultures of methanol fixed P2 chondrocytes. TRPV5 and TRPV6 were upregulated with time and passage in culture suggesting that a shift in the phenotype of the cells in monolayer culture alters the expression of these channels. In conclusion, several TRPV channels are likely to be involved in calcium signaling and homeostasis in chondrocytes.  相似文献   

6.
The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1′s actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.  相似文献   

7.
TRPV1, known as a capsaicin receptor, is the best-described transient receptor potential (TRP) ion channel. Recently, it was shown to be expressed by non-excitable cells such as lymphocytes. However, the data regarding the functional expression of the TRPV1 channel in the immune cells are often contradictory. In the present study, we performed a phylogenetical analysis of the canine TRP ion channels, we assessed the expression of TRPV1 in the canine peripheral blood mononuclear cells (PBMC) by qPCR and Western blot, and we determined the functionality of TRPV1 by whole-cell patch-clamp recordings and calcium assay. We found high expression of TRPV2, -M2, and -M7 in the canine PBMCs, while expression of TRPV1, -V4 and, -M5 was relatively low. We confirmed that TRPV1 is expressed on the protein level in the PBMC and it localizes in the plasma membrane. The whole-cell patch-clamp recording revealed that capsaicin application caused a significant increase in the current density. Similarly, the results from the calcium assay show a dose-dependent increase in intracellular calcium level in the presence of capsaicin that was partially abolished by capsazepine. Our study confirms the expression of TRPV1 ion channel on both mRNA and protein levels in the canine PBMC and indicates that the ion channel is functional.  相似文献   

8.
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel that is broadly expressed in different human tissues, including the digestive system, where it acts as a molecular sensor and a transducer that regulates a variety of functional activities. Despite the extensive research to determine the role of this channel in the physiology and pathophysiology of different organs, the unique morphological and functional features of TRPV4 in the esophagus remain largely unknown. Ten years ago, TRPV4 was shown to be highly expressed in esophageal epithelial cells where its activation induces Ca2+-dependent ATP release, which, in turn, mediates several functions, ranging from mechanosensation to wound healing. This review summarizes the research progress on TRPV4, and focuses on the functional expression of TRPV4 in esophageal epithelium and its possible role in different esophageal diseases that would support TRPV4 as a candidate target for future therapeutic approaches to treat patients with these conditions.  相似文献   

9.
Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase β). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1−/− mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects.  相似文献   

10.
TRPV4 (transient receptor potential vanilloid 4), a calcium permeable TRP ion channel, is known to play a key role in endocytosis. However, whether it contributes to exocytosis remains unclear. Here, we report that activation of TRPV4 induced massive exocytosis in both melanoma A375 cell and heterologous expression systems. We show here that, upon application of TRPV4-specific agonists, prominent vesicle priming from endoplasmic reticulum (ER) was observed, followed by morphological changes of mitochondrial crista may lead to cell ferroptosis. We further identified interactions between TRPV4 and folding/vesicle trafficking proteins, which were triggered by calcium entry through activated TRPV4. This interplay, in turn, enhanced TRPV4-mediated activation of folding and vesicle trafficking proteins to promote exocytosis. Our study revealed a signaling mechanism underlying stimulus-triggered exocytosis in melanoma and highlighted the role of cellular sensor TRPV4 ion channel in mediating ferroptosis.  相似文献   

11.
Lens ion homeostasis depends on Na,K-ATPase and NKCC1. TRPV4 and TRPV1 channels, which are mechanosensitive, play important roles in mechanisms that regulate the activity of these transporters. Here, we examined another mechanosensitive channel, piezo1, which is also expressed in the lens. The purpose of the study was to examine piezo1 function. Recognizing that activation of TRPV4 and TRPV1 causes changes in lens ion transport mechanisms, we carried out studies to determine whether piezo1 activation changes either Na,K-ATPase-mediated or NKCC1-mediated ion transport. We also examined channel function of piezo1 by measuring calcium entry. Rb uptake was measured as an index of inwardly directed potassium transport by intact mouse lenses. Intracellular calcium concentration was measured in Fura-2 loaded cells by a ratiometric imaging technique. Piezo1 immunolocalization was most evident in the lens epithelium. Potassium (Rb) uptake was increased in intact lenses as well as in cultured lens epithelium exposed to Yoda1, a piezo1 agonist. The majority of Rb uptake is Na,K-ATPase-dependent, although there also is a significant NKCC-dependent component. In the presence of ouabain, an Na,K-ATPase inhibitor, Yoda1 did not increase Rb uptake. In contrast, Yoda1 increased Rb uptake to a similar degree in the presence or absence of 1 µM bumetanide, an NKCC inhibitor. The Rb uptake response to Yoda1 was inhibited by the selective piezo1 antagonist GsMTx4, and also by the nonselective antagonists ruthenium red and gadolinium. In parallel studies, Yoda1 was observed to increase cytoplasmic calcium concentration in cells loaded with Fura-2. The calcium response to Yoda1 was abolished by gadolinium or ruthenium red. The calcium and Rb uptake responses to Yoda1 were absent in calcium-free bathing solution, consistent with calcium entry when piezo1 is activated. Taken together, these findings point to stimulation of Na,K-ATPase, but not NKCC, when piezo1 is activated. Na,K-ATPase is the principal mechanism responsible for ion and water homeostasis in the lens. The functional role of lens piezo1 is a topic for further study.  相似文献   

12.
The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.  相似文献   

13.
The most common medicinal claims for cannabis are relief from chronic pain, stimulation of appetite, and as an antiemetic. However, the mechanisms by which cannabis reduces pain and prevents nausea and vomiting are not fully understood. Among more than 450 constituents in cannabis, the most abundant cannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids either directly or indirectly modulate ion channel function. Transient receptor potential vanilloid 1 (TRPV1) is an ion channel responsible for mediating several modalities of pain, and it is expressed in both the peripheral and the central pain pathways. Activation of TRPV1 in sensory neurons mediates nociception in the ascending pain pathway, while activation of TRPV1 in the central descending pain pathway, which involves the rostral ventral medulla (RVM) and the periaqueductal gray (PAG), mediates antinociception. TRPV1 channels are thought to be implicated in neuropathic/spontaneous pain perception in the setting of impaired descending antinociceptive control. Activation of TRPV1 also can cause the release of calcitonin gene-related peptide (CGRP) and other neuropeptides/neurotransmitters from the peripheral and central nerve terminals, including the vagal nerve terminal innervating the gut that forms central synapses at the nucleus tractus solitarius (NTS). One of the adverse effects of chronic cannabis use is the paradoxical cannabis-induced hyperemesis syndrome (HES), which is becoming more common, perhaps due to the wider availability of cannabis-containing products and the chronic use of products containing higher levels of cannabinoids. Although, the mechanism of HES is unknown, the effective treatment options include hot-water hydrotherapy and the topical application of capsaicin, both activate TRPV1 channels and may involve the vagal-NTS and area postrema (AP) nausea and vomiting pathway. In this review, we will delineate the activation of TRPV1 by cannabinoids and their role in the antinociceptive/nociceptive and antiemetic/emetic effects involving the peripheral, spinal, and supraspinal structures.  相似文献   

14.
Depression is a prominent complex psychiatric disorder, usually complicated through expression of comorbid conditions, with chronic pain being among the most prevalent. This comorbidity is consistently associated with a poor prognosis and has been shown to negatively impact patient outcomes. With a global rise in this condition presenting itself, the importance of discovering long-term, effective, and affordable treatments is crucial. Electroacupuncture has demonstrated renowned success in its use for the treatment of pain and is a widely recognized therapy in clinical practice for the treatment of various psychosomatic disorders, most notably depression. Our study aimed to investigate the effects and mechanisms of Acid-Saline (AS) inducing states of chronic pain and depression comorbidity in the cerebellum, using the ST36 acupoint as the therapeutic intervention. Furthermore, the role of TRPV1 was relatedly explored through the use of TRPV1−/− mice (KO). The results indicated significant differences in the four behavioral tests used to characterize pain and depression states in mice. The AS and AS + SHAM group showed significant differences when compared to the Control and AS + EA groups in the von Frey and Hargreaves’s tests, as well as the Open-Field and Forced Swimming tests. This evidence was further substantiated in the protein levels observed in immunoblotting, with significant differences between the AS and AS + SHAM groups when compared to the AS + EA and AS + KO groups being identified. In addition, immunofluorescence visibly served to corroborate the quantitative outcomes. Conclusively these findings suggest that AS-induced chronic pain and depression comorbidity elicits changes in the cerebellum lobules VI, VII, VIII, which are ameliorated through the use of EA at ST36 via its action on TRPV1 and related molecular pathways. The action of TRPV1 is not singular in CPDC, which would suggest other potential targets such as acid-sensing ion channel subtype 3 (ASIC3) or voltage-gated sodium channels (Navs) that could be explored in future studies.  相似文献   

15.
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, acts as ‘polymodal cellular sensor’ on primary sensory neurons where it mediates the peripheral and central processing of pain, itch, and thermal sensation. However, the TRPA1 expression extends far beyond the sensory nerves. In recent years, much attention has been paid to its expression and function in non-neuronal cell types including skin cells, such as keratinocytes, melanocytes, mast cells, dendritic cells, and endothelial cells. TRPA1 seems critically involved in a series of physiological skin functions, including formation and maintenance of physico-chemical skin barriers, skin cells, and tissue growth and differentiation. TRPA1 appears to be implicated in mechanistic processes in various immunological inflammatory diseases and cancers of the skin, such as atopic and allergic contact dermatitis, psoriasis, bullous pemphigoid, cutaneous T-cell lymphoma, and melanoma. Here, we report recent findings on the implication of TRPA1 in skin physiology and pathophysiology. The potential use of TRPA1 antagonists in the treatment of inflammatory and immunological skin disorders will be also addressed.  相似文献   

16.
Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV) receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells.  相似文献   

17.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis. Transient Receptor Potential Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) receptors are non-selective cation channels expressed on primary sensory neurons and epithelial and immune cells. TRPV1 mRNA and immunopositivity, as well as TRPA1-like immunoreactivity upregulation, were demonstrated in OSCC, but selectivity problems with the antibodies still raise questions and their functional relevance is unclear. Therefore, here, we investigated TRPA1 and TRPV1 expressions in OSCC and analyzed their functions. TRPA1 and TRPV1 mRNA were determined by RNAscope in situ hybridization and qPCR. Radioactive 45Ca2+ uptake and ATP-based luminescence indicating cell viability were measured in PE/CA-PJ41 cells in response to the TRPA1 agonist allyl-isothiocyanate (AITC) and TRPV1 agonist capsaicin to determine receptor function. Both TRPA1 and TRPV1 mRNA are expressed in the squamous epithelium of the human oral mucosa and in PE/CA-PJ41 cells, and their expressions are significantly upregulated in OSCC compared to healthy mucosa. TRPA1 and TRPV1 activation (100 µM AITC, 100 nM capsaicin) induced 45Ca2+-influx into PE/CA-PJ41 cells. Both AITC (10 nM–5 µM) and capsaicin (100 nM–45 µM) reduced cell viability, reaching significant decrease at 100 nM AITC and 45 µM capsaicin. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the OSCC and confirm the expression of TRPV1 channel. These channels are functionally active and might regulate cancer cell viability.  相似文献   

18.

Background

Silica nanoparticles (SiNPs) have numerous beneficial properties and are extensively used in cosmetics and food industries as anti-caking, densifying and hydrophobic agents. However, the increasing exposure levels experienced by the general population and the ability of SiNPs to penetrate cells and tissues have raised concerns about possible toxic effects of this material. Although SiNPs are known to affect the function of the airway epithelium, the molecular targets of these particles remain largely unknown. Given that SiNPs interact with the plasma membrane of epithelial cells we hypothesized that they may affect the function of Transient Receptor Potential Vanilloid 4 (TRPV4), a cation-permeable channel that regulates epithelial barrier function. The main aims of this study were to evaluate the effects of SiNPs on the activation of TRPV4 and to determine whether these alter the positive modulatory action of this channel on the ciliary beat frequency in airway epithelial cells.

Results

Using fluorometric measurements of intracellular Ca2+ concentration ([Ca2+]i) we found that SiNPs inhibit activation of TRPV4 by the synthetic agonist GSK1016790A in cultured human airway epithelial cells 16HBE and in primary cultured mouse tracheobronchial epithelial cells. Inhibition of TRPV4 by SiNPs was confirmed in intracellular Ca2+ imaging and whole-cell patch-clamp experiments performed in HEK293T cells over-expressing this channel. In addition to these effects, SiNPs were found to induce a significant increase in basal [Ca2+]i, but in a TRPV4-independent manner. SiNPs enhanced the activation of the capsaicin receptor TRPV1, demonstrating that these particles have a specific inhibitory action on TRPV4 activation. Finally, we found that SiNPs abrogate the increase in ciliary beat frequency induced by TRPV4 activation in mouse airway epithelial cells.

Conclusions

Our results show that SiNPs inhibit TRPV4 activation, and that this effect may impair the positive modulatory action of the stimulation of this channel on the ciliary function in airway epithelial cells. These findings unveil the cation channel TRPV4 as a primary molecular target of SiNPs.
  相似文献   

19.
The abnormal expression of Transient Receptor Potential cation channel subfamily V member 4 (TRPV4) is closely related to the progression of multiple tumors. In addition, TRPV4 is increasingly being considered a potential target for cancer therapy, especially in tumor metastasis prevention. However, the biological correlation between TRPV4 and tumor metastasis, as well as the specific role of TRPV4 in malignant melanoma metastasis, is poorly understood. In this study, we aimed to examine the role of TRPV4 in melanoma metastasis through experiments and clinical data analysis, and the underlying anticancer mechanism of Baicalin, a natural compound, and its inhibitory effect on TRPV4 with in vivo and in vitro experiments. Our findings suggested that TRPV4 promotes metastasis in melanoma by regulating cell motility via rearranging the cytoskeletal, and Baicalin can inhibit cancer metastasis, whose mechanisms reverse the recruitment of activated cofilin to leading-edge protrusion and the increasing phosphorylation level of cortactin, which is provoked by TRPV4 activation.  相似文献   

20.
TRPV1 mediates pain occurring during sickling episodes in sickle cell disease (SCD). We examined if hemin, a porphyrin released during intravascular hemolysis modulates TRPV1. Calcium imaging and patch clamp were employed to examine effects of hemin on mouse dorsal root ganglion (DRG) neurons and HEK293t cells expressing TRPV1 and TRPA1. Hemin induced a concentration-dependent calcium influx in DRG neurons which was abolished by the unspecific TRP-channel inhibitor ruthenium red. The selective TRPV1-inhibitor BCTC or genetic deletion of TRPV1 only marginally impaired hemin-induced calcium influx in DRG neurons. While hTRPV1 expressed in HEK293 cells mediated a hemin-induced calcium influx which was blocked by BCTC, patch clamp recordings only showed potentiated proton- and heat-evoked currents. This effect was abolished by the PKC-inhibitor chelerythrine chloride and in protein kinase C (PKC)-insensitive TRPV1-mutants. Hemin-induced calcium influx through TRPV1 was only partly PKC-sensitive, but it was abolished by the reducing agent dithiothreitol (DTT). In contrast, hemin-induced potentiation of inward currents was not reduced by DTT. Hemin also induced a redox-dependent calcium influx, but not inward currents on hTRPA1. Our data suggest that hemin induces a PKC-mediated sensitization of TRPV1. However, it also acts as a photosensitizer when exposed to UVA-light used for calcium imaging. The resulting activation of redox-sensitive ion channels such as TRPV1 and TRPA1 may be an in vitro artifact with limited physiological relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号