首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a computational technique based on the collocation method and Müntz polynomials for the solution of fractional differential equations. An appropriate representation of the solution via the Müntz polynomials reduces its numerical treatment to the solution of a system of algebraic equations. The main advantage of the present method is its superior accuracy and exponential convergence. Consequently, one can obtain good results even by using a small number of collocation points. The accuracy and performance of the proposed method are examined by means of some numerical experiments.  相似文献   

2.
This paper deals with a novel co-simulation approach for coupling mechanical subsystems in time domain. The submodels are assumed to be coupled by algebraic constraint equations. In contrast to well-known coupling techniques from the literature, the here presented index-1 approach uses a special technique for approximating the coupling variables so that the constraint equations together with the hidden constraints on velocity and acceleration level can be enforced simultaneously at the communication time points. The method discussed here uses second- and third-order approximation polynomials. Because of the high approximation order, the numerical errors are very small, and a good convergence behavior is achieved. A stability analysis is carried out, and it is shown that—despite the fact that higher-order approximation polynomials are applied—also a good numerical stability behavior is observed. Different numerical examples are presented, which illustrate the practical application of the approach.  相似文献   

3.
In this paper, a numerical method which produces an approximate polynomial solution is presented for solving the high-order linear singular differential-difference equations. With the aid of Bessel polynomials and collocation points, this method converts the singular differential-difference equations into the matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. This method gives the analytic solutions when the exact solutions are polynomials. Finally, some experiments and their numerical solutions are given; by comparing the numerical results obtained from the other methods, we show the high accuracy and efficiency of the proposed method. All of the numerical computations have been performed on a PC using some programs written in MATLAB v7.6.0 (R2008a).  相似文献   

4.
5.

In this paper, we propose an efficient numerical technique based on the Bernstein polynomials for the numerical solution of the equivalent integral form of the derivative dependent Emden–Fowler boundary value problems which arises in various fields of applied mathematics, physical and chemical sciences. The Bernstein collocation method is used to convert the integral equation into a system of nonlinear equations. This system is then solved efficiently by suitable iterative method. The error analysis of the present method is discussed. The accuracy of the proposed method is examined by calculating the maximum absolute error and the \(L_{2}\) error of four examples. The obtained numerical results are compared with the results obtained by the other known techniques.

  相似文献   

6.
In this paper, a numerical method is introduced to solve a system of linear Volterra integral equations (VIEs). By using the Bessel polynomials and the collocation points, this method transforms the system of linear Volterra integral equations into the matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. This method gives an analytic solution when the exact solutions are polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and comparisons are made with existing results. All of the numerical computations have been performed on computer using a program written in MATLAB v7.6.0 (R2008a).  相似文献   

7.
Integrating factors have been used to temporarily compress the differential equations describing the rates of change of the species of a gas-phase reaction mechanism, resulting in a faster simulation of gas-phase chemistry. The processing time requirements have been reduced by up to a factor of 3.7, by combining the use of Bernoulli's integrating factors with the assumption of linear time dependence within each substep of a multistep integration. No formal loss in accuracy relative to the original system was observed, with a suite of 2511 test cases having average errors of the same magnitude as the iteration error allowed within the numerical solver. The method thus presents a significant means for reducing the simulation time required by atmospheric reaction-transport models.  相似文献   

8.

A numerical scheme based on Chebyshev polynomials for the determination of the response of spring-mass-damper systems is presented. The state vector of the differential equation of the spring-mass-damper system is expanded in terms of Chebyshev polynomials. This expansion reduces the original differential equations to a set of linear algebraic equations where the unknowns are the coefficient of Chebyshev polynomials. A formal procedure to generate the coefficient matrix and the right-hand side vector of this system of algebraic equations is discussed. The numerical efficiency of the proposed method is compared with that of Runge-Kutta method. It is shown that this scheme is accurate and is computationally efficient.  相似文献   

9.
In this paper, a numerical matrix method based on collocation points is presented for the approximate solution of the systems of high-order linear Fredholm integro-differential equations with variable coefficients under the mixed conditions in terms of the Bessel polynomials. Numerical examples are included to demonstrate the validity and the applicability of the technique and also the results are compared with the different methods. The results show the efficiently and the accuracy of the present work. All of the numerical computations have been performed on a PC using some programs written in MATLAB v7.6.0 (R2008a).  相似文献   

10.
In this study, we present a new sixth-order finite difference weighted essentially non-oscillatory (WENO) scheme for solving Hamilton–Jacobi equations. The proposed scheme recovers the maximal approximation order in smooth regions without loss of accuracy at critical points. We incorporate exponential polynomials into the scheme to obtain better approximation near steep gradients without spurious oscillations. In order to design nonlinear weights based on exponential polynomials, we suggest an alternative approach to construct Lagrange-type exponential functions reproducing the cell-average values of exponential basis functions. Using the Lagrange-type exponential functions, we provide a detailed analysis of the approximation order of the proposed WENO scheme. Compared to other WENO schemes, the proposed scheme is simpler to implement, yielding better approximations with lower computational costs. A number of numerical experiments are presented to demonstrate the performance of the proposed scheme.  相似文献   

11.
The spline element method with constraints is a discretization method where the unknowns are expanded as polynomials on each element and Lagrange multipliers are used to enforce the interelement conditions, the boundary conditions and the constraints in numerical solution of partial differential equations. Spaces of piecewise polynomials with global smoothness conditions are known as multivariate splines and have been extensively studied using the Bernstein-Bézier representation of polynomials. It is used here to write the constraints mentioned above as linear equations. In this paper, we illustrate the robustness of this approach on two singular perturbation problems, a fourth order problem and a Stokes-Darcy flow. It is shown that the method converges uniformly in the perturbation parameter.  相似文献   

12.
In this study, a practical matrix method, which is based on collocation points, is presented to find approximate solutions of high-order linear Volterra integro-differential equations (VIDEs) under the mixed conditions in terms of Bessel polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and comparisons are made with the existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on the computer using a program written in MATLAB v7.6.0 (R2008a).  相似文献   

13.
Radial basis function (RBF) methods have been actively developed in the last decades. RBF methods are global methods which do not require the use of specialized points and that yield high order accuracy if the function is smooth enough. Like other global approximations, the accuracy of RBF approximations of discontinuous problems deteriorates due to the Gibbs phenomenon, even as more points are added. In this paper we show that it is possible to remove the Gibbs phenomenon from RBF approximations of discontinuous functions as well as from RBF solutions of some hyperbolic partial differential equations. Although the theory for the resolution of the Gibbs phenomenon by reprojection in Gegenbauer polynomials relies on the orthogonality of the basis functions, and the RBF basis is not orthogonal, we observe that the Gegenbauer polynomials recover high order convergence from the RBF approximations of discontinuous problems in a variety of numerical examples including the linear and nonlinear hyperbolic partial differential equations. Our numerical examples using multi-quadric RBFs suggest that the Gegenbauer polynomials are Gibbs complementary to the RBF multi-quadric basis.  相似文献   

14.
《国际计算机数学杂志》2012,89(2-4):181-194
One of the most important problems in numerical analysis and numerical optimization is to solve a linear system of equations. Sometimes it should be repeated when one of the equations is replaced by a new one. In this paper as a result of theoretical analysis, an algorithm model and a particular algorithm which are based on the ABS class are proposed. After the original linear system has been solved by the ABS class, the algorithms proposed here can efficiently solve the new system which is obtained from the original system by replacing one of its equations by using information obtained in the previous computation. These algorithms can be used continually when some equations of the original system are replaced by new equations successively with less computation effort.  相似文献   

15.
The difficulty of solving the min–max optimal control problems (M-MOCPs) with uncertainty using generalised Euler–Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler–Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.  相似文献   

16.
《国际计算机数学杂志》2012,89(8):1453-1472
In this paper, we develop a general approach for estimating and bounding the error committed when higher-order ordinary differential equations (ODEs) are approximated by means of the coefficients perturbation methods. This class of methods was specially devised for the solution of Schrödinger equation by Ixaru in 1984. The basic principle of perturbation methods is to find the exact solution of an approximation problem obtained from the original one by perturbing the coefficients of the ODE, as well as any supplementary condition associated to it. Recently, the first author obtained practical formulae for calculating tight error bounds for the perturbation methods when this technique is applied to second-order ODEs. This paper extends those results to the case of differential equations of arbitrary order, subjected to some specified initial or boundary conditions. The results of this paper apply to any perturbation-based numerical technique such as the segmented Tau method, piecewise collocation, Constant and Linear perturbation. We will focus on the Tau method and present numerical examples that illustrate the accuracy of our results.  相似文献   

17.
《国际计算机数学杂志》2012,89(16):2180-2197
In this paper, a collocation method is presented for the solutions of the system of the Riccati-type differential equations with variable coefficients. The proposed approach consists of reducing the problem to a nonlinear algebraic equation system by expanding the approximate solutions in terms of the Bessel polynomials with unknown coefficients. The unknown coefficients of the Bessel polynomials are found by using the matrix operations of derivatives together with the collocation method. The proposed method gives the analytic solutions when the exact solutions are polynomials. Also, an error analysis technique based on the residual function is introduced for the suggested method. The reliability and efficiency of the proposed scheme are demonstrated by some numerical examples. Comparing the methodology with some known techniques shows that the presented approach is relatively easy and highly accurate. All of the numerical calculations have been done by using a program written in Maple.  相似文献   

18.
In this paper a numerical algorithm for the solution of the multi-dimensional steady Euler equations in conservative and non-conservative form is presented. Most existing standard and multi-dimensional schemes use flux balances with assumed constant distribution of variables along each cell edge, which interfaces two grid cells. This assumption is believed to be one of the main reasons for the limited advantage gained from multi-dimensional high order discretisations compared to standard one-dimensional ones. The present algorithm is based on the optimisation of polynomials describing the distribution of flow variables in grid cells, where only polynomials that satisfy the Euler equations in the entire grid cell can be selected. The global solution is achieved if all polynomials and by that the flow variables are continuous along edges interfacing neighbouring grid cells. A discrete approximation of a given spatial order is converged if the deviation between polynomial distributions of adjacent grid cells along the interfacing edge of the cells is minimal. Results from the present scheme between first and fifth order spatial accuracy are compared to standard first and second order Roe computations for simple test cases demonstrating the gain in accuracy for a number of sub- and supersonic flow problems.  相似文献   

19.
This paper presents a computational technique for the solution of the neutral delay differential equations with state-dependent and time-dependant delays. The properties of the hybrid functions which consist of block-pulse functions plus Legendre polynomials are presented. The approach uses these properties together with the collocation points to reduce the main problems to systems of nonlinear algebraic equations. An estimation of the error is given in the sense of Sobolev norms. The efficiency and accuracy of the proposed method are illustrated by several numerical examples.  相似文献   

20.
The present article is devoted to develop a new approach and methodology to find the approximate solution of second order two-dimensional telegraph equations with the Dirichlet boundary conditions. We first transform the telegraph equations into equivalent partial integro-differential equations (PIDEs) which contain both initial and boundary conditions and therefore can be solved numerically in a more appropriate manner. Operational matrices of integration and differentiation of Bernoulli polynomials together with the completeness of these polynomials are used to reduce the PIDEs into the associated algebraic generalized Sylvester equations which can be solved by an efficient Krylov subspace iterative (i.e., BICGSTAB) method. The efficiency of the proposed method has been confirmed with several test examples and it is clear that the results are acceptable and found to be in good agreement with exact solutions. We have compared the numerical results of the proposed method with radial basis function method and differential quadrature method. Also, the method is simple, efficient and produces very accurate numerical results in considerably small number of basis functions and hence reduces computational effort. Moreover, the technique is easy to apply for multidimensional problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号