首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results.  相似文献   

2.
3.
In mammals, de novo methylation of cytosines in DNA CpG sites is performed by DNA methyltransferase Dnmt3a. Changes in the methylation status of CpG islands are critical for gene regulation and for the progression of some cancers. Recently, the potential involvement of DNA G-quadruplexes (G4s) in methylation control has been found. Here, we provide evidence for a link between G4 formation and the function of murine DNA methyltransferase Dnmt3a and its individual domains. As DNA models, we used (i) an isolated G4 formed by oligonucleotide capable of folding into parallel quadruplex and (ii) the same G4 inserted into a double-stranded DNA bearing several CpG sites. Using electrophoretic mobility shift and fluorescence polarization assays, we showed that the Dnmt3a catalytic domain (Dnmt3a-CD), in contrast to regulatory PWWP domain, effectively binds the G4 structure formed in both DNA models. The G4-forming oligonucleotide displaced the DNA substrate from its complex with Dnmt3a-CD, resulting in a dramatic suppression of the enzyme activity. In addition, a direct impact of G4 inserted into the DNA duplex on the methylation of a specific CpG site was revealed. Possible mechanisms of G4-mediated epigenetic regulation may include Dnmt3a sequestration at G4 and/or disruption of Dnmt3a oligomerization on the DNA surface.  相似文献   

4.
Prostate cancer (PC) is the most commonly diagnosed neoplasm and the third most common cause of cancer-related death amongst men in the Western world. PC is a clinically highly heterogeneous disease, and distinction between aggressive and indolent disease is a major challenge for the management of PC. Currently, no biomarkers or prognostic tools are able to accurately predict tumor progression at the time of diagnosis. Thus, improved biomarkers for PC prognosis are urgently needed. This review focuses on the prognostic potential of DNA methylation biomarkers for PC. Epigenetic changes are hallmarks of PC and associated with malignant initiation as well as tumor progression. Moreover, DNA methylation is the most frequently studied epigenetic alteration in PC, and the prognostic potential of DNA methylation markers for PC has been demonstrated in multiple studies. The most promising methylation marker candidates identified so far include PITX2, C1orf114 (CCDC181) and the GABRE~miR-452~miR-224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3. Several other biomarker candidates have also been investigated, but with less stringent clinical validation and/or conflicting evidence regarding their possible prognostic value available at this time. Here, we review the current evidence for the prognostic potential of DNA methylation markers in PC.  相似文献   

5.
In 2020, approximately 191,930 new prostate cancer (PCa) cases are estimated in the United States (US). Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. This study aims to assess methylation patterns between aggressive and indolent PCa including DNA repair genes along with ancestry proportions. Prostate tumors classified as aggressive (n = 11) and indolent (n = 13) on the basis of the Gleason score were collected. Tumor and adjacent normal tissue were annotated on H&E (Haemotoxylin and Eosin) slides and extracted by macro-dissection. Methylation patterns were assessed using the Illumina 850K DNA methylation platform. Raw data were processed using the Bioconductor package. Global ancestry proportions were estimated using ADMIXTURE (k = 3). One hundred eight genes including AOX1 were differentially methylated in tumor samples. Regarding the PCa aggressiveness, six hypermethylated genes (RREB1, FAM71F2, JMJD1C, COL5A3, RAE1, and GABRQ) and 11 hypomethylated genes (COL9A2, FAM179A, SLC17A2, PDE10A, PLEKHS1, TNNI2, OR51A4, RNF169, SPNS2, ADAMTSL5, and CYP4F12) were identified. Two significant differentially methylated DNA repair genes, JMJD1C and RNF169, were found. Ancestry proportion results for African, European, and Indigenous American were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation patterns related to PCa in H/L men along with specific patterns related to aggressiveness and DNA repair constitutes a pivotal effort for the understanding of PCa in this population.  相似文献   

6.
Alterations in DNA methylation are critical for the carcinogenesis of ovarian tumors, especially ovarian carcinoma (OC). DNMT3B, a de novo DNA methyltransferase (DNMT), encodes for fifteen spliced protein products or isoforms. DNMT3B isoforms lack exons for the catalytic domain, with functional consequences on catalytic activity. Abnormal expression of DNMT3B isoforms is frequently observed in several types of cancer, such as breast, lung, kidney, gastric, liver, skin, leukemia, and sarcoma. However, the expression patterns and consequences of DNMT3B isoforms in OC are unknown. In this study, we analyzed each DNMT and DNMT3B isoforms expression by qPCR in 63 OC samples and their association with disease-free survival (DFS), overall survival (OS), and tumor progression. We included OC patients with the main histological subtypes of EOC and patients in all the disease stages and found that DNMTs were overexpressed in advanced stages (p-value < 0.05) and high-grade OC (p-value < 0.05). Remarkably, we found DNMT3B1 overexpression in advanced stages (p-value = 0.0251) and high-grade serous ovarian carcinoma (HGSOC) (p-value = 0.0313), and DNMT3B3 was overexpressed in advanced stages (p-value = 0.0098) and high-grade (p-value = 0.0004) serous ovarian carcinoma (SOC). Finally, we observed that overexpression of DNMT3B isoforms was associated with poor prognosis in OC and SOC. DNMT3B3 was also associated with FDS (p-value = 0.017) and OS (p-value = 0.038) in SOC patients. In addition, the ovarian carcinoma cell lines OVCAR3 and SKOV3 also overexpress DNMT3B3. Interestingly, exogenous overexpression of DNMT3B3 in OVCAR3 causes demethylation of satellite 2 sequences in the pericentromeric region. In summary, our results suggest that DNMT3B3 expression is altered in OC.  相似文献   

7.
We have studied the adenosine binding specificities of two bacterial DNA methyltransferases, Taq methyltransferase (M.TaqI), and HhaI methyltransferase (M.HhaI). While they have similar cofactor binding pocket interactions, experimental data showed different specificity for novel S-nucleobase-l -methionine cofactors (SNMs; N=guanosyl, cytidyl, uridyl). Protein dynamics corroborate the experimental data on the cofactor specificities. For M.TaqI the specificity for S-adenosyl-l -methionine (SAM) is governed by the tight binding on the nucleoside part of the cofactor, while for M.HhaI the degree of freedom of the nucleoside chain allows the acceptance of other bases. The experimental data prove catalytically productive methylation by the M.HhaI binding pocket for all the SNMs. Our results suggest a new route for successful design of unnatural SNM analogues for methyltransferases as a tool for cofactor engineering.  相似文献   

8.
The human DNA methyltransferase 3A (DNMT 3A) is responsible for de novo epigenetic regulation, which is essential for mammalian viability and implicated in diverse diseases. All DNA cytosine C5 methyltransferases follow a broadly conserved catalytic mechanism. We investigated whether C5 β‐elimination contributes to the rate‐limiting step in catalysis by DNMT3A and the bacterial M.HhaI by using deuterium substitutions of C5 and C6 hydrogens. This substitution caused a 1.59–1.83 fold change in the rate of catalysis, thus suggesting that β‐elimination is partly rate‐limiting for both enzymes. We used a multisite substrate to explore the consequences of slowing β‐elimination during multiple cycles of catalysis. Processive catalysis was slower for both enzymes, and deuterium substitution resulted in DNMT 3A dissociating from its substrate. The decrease in DNA methylation rate by DNMT 3A provides the basis of our ongoing efforts to alter cellular DNA methylation levels without the toxicity of currently used methods.  相似文献   

9.
10.
The N‐terminal regulatory part of DNA methyltransferase 1 (Dnmt1) contains a replication foci targeting sequence (RFTS) domain, which is involved in the recruitment of Dnmt1 to replication forks. The RFTS domain has been observed in a crystal structure to bind to the catalytic domain of the enzyme and block its catalytic centre. Removal of the RFTS domain led to activation of Dnmt1, thus suggesting an autoinhibitory role of this domain. Here, we destabilised the interaction of the RFTS domain with the catalytic domain by site‐directed mutagenesis and purified the corresponding Dnmt1 variants. Our data show that these mutations resulted in an up to fourfold increase in Dnmt1 methylation activity in vitro. Activation of Dnmt1 was not accompanied by a change in its preference for methylation of hemimethylated CpG sites. We also show that the Dnmt1 E572R/D575R variant has a higher DNA methylation activity in human cells after transfection into HCT116 cells, which are hypomorphic for Dnmt1. Our findings strongly support the autoinhibitory role of the RFTS domain, and indicate that it contributes to the regulation of Dnmt1 activity in cells.  相似文献   

11.
12.
It is well known that certain non B-DNA structures, including G-quadruplexes, are key elements that can regulate gene expression. Here, we explore the theory that DNA modifications, such as methylation of cytosine, could act as a dynamic switch by promoting or alleviating the structural formation of G-quadruplex structures in DNA or RNA. The interaction between epigenetic DNA modifications, G4 formation, and the 3D architecture of the genome is a complex and developing area of research. Although there is growing evidence for such interactions, a great deal still remains to be discovered. In vivo, the potential effect that cytosine methylation may have on the formation of DNA structures has remained largely unresearched, despite this being a potential mechanism through which epigenetic factors could regulate gene activity. Such interactions could represent novel mechanisms for important biological functions, including altering nucleosome positioning or regulation of gene expression. Furthermore, promotion of strand-specific G-quadruplex formation in differentially methylated genes could have a dynamic role in directing X-inactivation or the control of imprinting, and would be a worthwhile focus for future research.  相似文献   

13.
ESR1 methylation was proposed as mechanism for endocrine resistance in metastatic breast cancer patients. To evaluate its potential as a minimally invasive biomarker, we investigated the feasibility of measuring ESR1 methylation in cell-free DNA (cfDNA) and its association with endocrine resistance. First, we provided evidence that demethylation in vitro restores ER expression. Subsequently, we found that ESR1 methylation in cfDNA was not enriched in endocrine-resistant versus endocrine-sensitive patients. Interestingly, we found a correlation between ESR1 methylation and age. Publicly available data confirm an age-related increase in ESR1 methylation in leukocytes, confounding the determination of the ESR1 methylation status of tumors using cfDNA.  相似文献   

14.
15.
Uveal melanoma (UM) is an ocular tumor with a dismal prognosis. Despite the availability of precise molecular and cytogenetic techniques, clinicopathologic features with limited accuracy are widely used to predict metastatic potential. In 51 UM tissues, we assessed a correlation between the expression of nine proteins evaluated by immunohistochemistry (IHC) (Melan-A, S100, HMB45, Cyclin D1, Ki-67, p53, KIT, BCL2, and AIFM1) and the presence of UM-specific chromosomal rearrangements measured by multiplex ligation-dependent probe amplification (MLPA), to find IHC markers with increased prognostic information. Furthermore, mRNA expression and DNA methylation values were extracted from the whole-genome data, achieved by analyzing 22 fresh frozen UM tissues. KIT positivity was associated with monosomy 3, increasing the risk of poor prognosis more than 17-fold (95% CI 1.53–198.69, p = 0.021). A strong negative correlation was identified between mRNA expression and DNA methylation values for 12 of 20 analyzed positions, five located in regulatory regions of the KIT gene (r = −0.658, p = 0.001; r = −0.662, p = 0.001; r = −0.816; p < 0.001; r = −0.689, p = 0.001; r = −0.809, p < 0.001, respectively). DNA methylation β values were also inversely associated with KIT protein expression (p = 0.001; p = 0.001; p = 0.015; p = 0.025; p = 0.002). Our findings, showing epigenetic deregulation of KIT expression, may contribute to understanding the past failure to therapeutically target KIT in UM.  相似文献   

16.
One step at a time: Substrates containing nucleotide analogues lacking sequence-specific contacts to the C5 methyltransferase M.HhaI were used to probe the role of individual interactions in effecting conformational transitions during base flipping. A segregation of duties, that is, specific recognition and chemomechanical force for base flipping and active site assembly, within the enzyme is confirmed.  相似文献   

17.
Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs are known regulators of gene expression and genomic stability in cell growth, development, and differentiation. Because epigenetic mechanisms can regulate several immune system elements, epigenetic alterations have been found in several autoimmune diseases. The purpose of this review is to discuss the epigenetic modifications, mainly DNA methylation, involved in autoimmune diseases in which T cells play a significant role. For example, Rheumatoid Arthritis and Systemic Lupus Erythematosus display differential gene methylation, mostly hypomethylated 5′-C-phosphate-G-3′ (CpG) sites that may associate with disease activity. However, a clear association between DNA methylation, gene expression, and disease pathogenesis must be demonstrated. A better understanding of the impact of epigenetic modifications on the onset of autoimmunity will contribute to the design of novel therapeutic approaches for these diseases.  相似文献   

18.
19.
DNA methylation maintains genome stability and regulates gene expression in plants. RNA-directed DNA methylation (RdDM) is critical for appropriate methylation. However, no efficient tools are available for the investigation of the functions of specific DNA methylation. In this study, the cucumber mosaic virus vector was used for targeted DNA methylation. Methylation was rapidly induced but gradually decreased from the 3′ end of the target endogenous sequence in Nicotiana benthamiana, suggesting a mechanism to protect against the ectopic introduction of DNA methylation. Increasing 24-nt siRNAs blocked this reduction in methylation by down-regulating DCL2 and DCL4. RdDM relies on the sequence identity between RNA and genomic DNA; however, this identity does not appear to be the sole determinant for efficient DNA methylation. The current findings provide new insight into the regulation of DNA methylation and promote additional effort to develop efficient targeted DNA methylation in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号