首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A novel, efficient, and easily synthesizable catalyst, an emeraldine form of polyaniline (PANI)?1‐hydroxyethane 1,1‐diphosphonic acid salt (HEDP), was successfully synthesized and demonstrated as a reusable polymer‐based solid acid catalyst in the synthesis of N‐benzylidine‐2‐phenyl imidazo[1,2‐a]pyridines with 2‐aminopyridine with aromatic aldehydes and trimethyl silylcyanide at room temperature. PANI–HEDP was characterized by Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, and conductivity measurements. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2995–3000, 2013  相似文献   

2.
Biodiesel has been identified as a suitable resource that can be produced from biomass such as Styrax confusus Hemsl. In the current study, biodiesel was synthesized from Styrax confusus Hemsl oil catalyzed by a magnetic solid acid heterogeneous catalyst S2O82?/ZrO2‐TiO2‐Fe3O4, which had a high recovery rate and reusability. The catalyst was prepared by co‐precipitation and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction and Brunauer, Emmett and Teller (BET) adsorption. The properties of the catalyst, including the recovery rate, usage count, magnetic susceptibility and catalytic efficiency, were studied. The results showed that the catalyst has a BET pore diameter of 1.74 nm, BET area of 7.3 m2/g, molar magnetic susceptibility of 1.83 × 10?5 m3/kg and tetragonal structure. In addition, the influences of reaction conditions on yields of biodiesel were also discussed. A fatty acid methyl ester (FAME) yield of 90.02 % was obtained under the conditions of reaction time 1.5 h, reaction temperature 373 K, catalyst amount 5 %, and methanol‐to‐oil molar ratio 8:1. A FAME yield of 65.5 % was obtained when the catalyst was used for the fourth time.  相似文献   

3.
A periodic mesoporous organosilica (PMO) with chiral cyclohexyldiamine‐based nickel(II) complexes incorporated within the silica framework was prepared through a co‐condensation of (1R,2R)‐cyclohexyldiamine‐derived silane and Ph‐bridged silane followed by complexation of nickel(II) bromide in the presence of (1R,2R)‐N,N′‐dibenzylcyclohexyldiamine. Structural analyses by X‐ray powder diffraction, nitrogen sorption and transmission electron microscopy disclosed its orderly mesostructure while characterization by solid‐state NMR and X‐ray photoelectron spectroscopy demonstrated the well‐defined single‐site chiral bis(cyclohexyldiamine)‐based nickel(II) active centers incorporated within the PMO material. In particular, as a heterogeneous chiral catalyst, this periodic mesoporous organosilica showed high catalytic activity and excellent enantioselectivity in asymmetric Michael addition of 1,3‐dicarbonyl compounds to nitroalkenes (more than 92% conversions and up to 99% ee values). More importantly, this heterogeneous catalyst could be recovered easily and reused repeatedly nine times without obviously affecting its ee value, showing good potential for industrial applications.  相似文献   

4.
In this study, a new optically active monomer containing two chemically preformed imide rings was synthesized. The monomer was then used to synthesize optically active poly(amide imide)s (OAPAIs) and an optically active polyionic liquid (OAPIL), which were finally reacted with various amounts of silica nanoparticles in an in situ polymerization reaction to produce OAPAI/SiO2 and OAPIL/SiO2 hybrid materials containing sulfonic acid groups. The prepared monomers and the OAPAI and OAPIL nanocomposites were characterized by 1H‐NMR spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, and differential scanning calorimetry. OAPIL/SiO2 served as an excellent catalyst in water as a solvent for the hydrolysis of d ,l ‐phenylglycine methyl ester with the advantage of a markedly enhanced enantioselectivity and activity. Also, the enantioselectivity was strongly dependent on the SiO2 content in the OAPIL/SiO2 systems; a favorable SiO2 content was 20% (w/w). The enantioselectivity was 95.2% (substrate conversion = 62.3%). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39595.  相似文献   

5.
Magnetic polystyrene nanospheres were efficiently prepared by using a new indirect process based on miniemulsion polymerization of styrene. The samples were characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), and vibrating‐sample magnetometry (VSM), respectively. The experimental results clearly show that the 3‐methacryloxypropyltrimethoxy silane was anchored onto the surface of the magnetic particles to form the vinyl end. The size of the magnetic particle is about 6–30 nm. The size of the magnetic particle capped with polystyrene is about 1–2 μm. The magnetic polystyrene spheres exhibit multidomain character, whereas the pure magnetic particles show single domain character. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3660–3666, 2007  相似文献   

6.
Wei Wang  Shan Ji  Hui Wang  Rongfang Wang 《Fuel Cells》2012,12(6):1129-1133
To improve the electrochemical performance of Pd‐based catalysts for formic acid oxidation, a carbon supported nanoporous PdNi catalyst is prepared by dealloying high‐Ni‐content PdNi alloy nanoparticles in acid solution. The structure of nanoporous PdNi/C catalyst is characterized by X‐ray diffraction, transmission electron microscopy and X‐ray photoelectron spectroscopy. The electrocatalytic results show that the activity of the nanoporous PdNi/C catalyst is higher than that of nonporous Pd/C catalyst. The results demonstrate that the carbon‐supported nanoporous PdNi catalyst has a potential for application in direct formic acid fuel cells.  相似文献   

7.
Bi3+‐TiO2 photocatalysts were prepared by doping bismuth ion into the TiO2 structure in a sol‐gel process. The catalyst samples were then characterized by UV‐vis diffuse reflectance spectra (DRS), X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Rodamine‐B (RhB) was used in this study as a model chemical with the aim of organic pollutants control. The photocatalytic degradation of RhB demonstrated that an optimal loading of bismuth 0.7 at. % achieved the highest photodegradation rate, with the rate constant increasing by a factor of 3.89 over neat TiO2 (P25) under UV illumination (λ ≥ 320 nm). The degradation of p‐nitrobenzonic acid (pNBA) was also examined to prevent/preclude/exclude/ the photosensitization pathway. GC‐MS results show that pNBA can be effectively degraded and minerized to small molecules, such as quinone, acetic acid and formic acid.  相似文献   

8.
In this article, we describe a novel redox interfacial‐initiated micro‐emulsion polymerization (RIEP) to prepare hollow polystyrene microspheres with magnetite nanoparticles (MPs) core and polystyrene (PS) shell (MPs‐PS) under ambient pressure. The emulsion was constituted water‐based magnetic ferro‐fluid as dispersing phase and organic solvent and styrene (St) as continuous phase. Cumene hydroperoxide (CHPO)/iron (II) sulfates (FS) as the redox initiation system, the water‐soluble FS acted as the reducing component and the oil‐soluble CHPO as the oxidant component of the redox initiation system. Therefore, the primary radicals are produced mainly at the oil/water interface to initiate the polymerization of styrene to form polymer shell. The final products thoroughly characterized by X‐ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, field‐emission scanning electron microscopy, thermogravimetric analysis, dynamic light scattering, and X‐ray photoelectron spectroscopy, which showed the formation of hollow magnetite/polystyrene nanocomposite microspheres. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer. The saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) is 30 emu/g, 15 emu/g and 370 Oe, respectively. The results revealed that the hybrid materials microspheres were super‐paramagnetic. POLYM. COMPOS., 31:1846–1852, 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
Biomaterials capable of controlling the delivery of drugs have the potential to treat a variety of conditions. Herein, the preparation of electrically conductive silk fibroin film‐based drug delivery devices is described. Casting aqueous solutions of Bombyx mori silk fibroin, followed by drying and annealing to impart β‐sheets to the silk fibroin, assure that the materials are stable for further processing in water; and the silk fibroin films are rendered conductive by generating an interpenetrating network of a copolymer of pyrrole and 3‐amino‐4‐hydroxybenzenesulfonic acid in the silk fibroin matrix (characterized by a variety of techniques including circular dichroism, Fourier‐transform infrared spectroscopy, nuclear magnetic resonance, Raman spectroscopy, resistance measurements, scanning electron microscopy‐energy dispersive X‐ray spectroscopy, thermogravimetric analysis, X‐ray diffraction, and X‐ray photoelectron spectroscopy). Fibroblasts adhere on the surface of the biomaterials (viability assessed using an (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay and visualized using a confocal microscope), and a fluorescently labeled drug (Texas‐Red Gentamicin) can be loaded electrochemically and released (µg cm?2 quantities) in response to the application of an electrical stimulus.  相似文献   

10.
In situ silica sol–gel‐derived organic–inorganic hybrid materials, which comprise a vinyltrimethoxysilane‐grafted ethylene–propylene copolymer (EPR‐g‐VTMS) and n‐hexyltrimethoxysilane (HTMS), were successfully prepared in the presence of an organic acid and base catalyst. Benzenesulfonic acid and aniline were selected as the organic acid and base catalyst, respectively, to examine the progress and effect of progressive changes in the silane water‐crosslinking reaction of EPR‐g‐VTMS/HTMS composites. The water‐crosslinked EPR‐g‐VTMS/HTMS composites were characterized by means of attenuated total reflectance Fourier transform infrared spectroscopy, gel content, solid‐state 29Si cross‐polarization/magic‐angle spinning NMR, wide‐angle X‐ray scattering, tensile strength and field‐emission scanning electron microscopy measurements. These results revealed that the type of catalyst has a substantial influence on the nature of siloxane bonds and eventually the physical tensile properties of the water‐crosslinked EPR‐g‐VTMS/HTMS composites, which can be explained mainly from knowledge of the traditional acid‐ and base‐catalyzed silica sol–gel reaction. Moreover, an in‐depth analysis of the aniline‐catalyzed composites indicated the formation of ladder‐type poly(n‐hexylsilsesquioxane)s and the presence of a highly ordered structure with a thickness equal to the length of two n‐hexyl groups in all‐trans conformation. We demonstrate potential for the future design of highly ordered silicate‐based organic–inorganic hybrid nanocomposites. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The application potential of hydrophobic polymer is numerous. Lauryl methacrylate (LMA) having long alkyl chain is a commercially available hydrophobic monomer. In this investigation, poly‐LMA (PLMA) latex particles were prepared by suspension polymerization in aqueous media using 2,2′‐azobis(isobutyronitrile) (AIBN) in presence of poly(vinyl alcohol) (PVA) as steric stabilizer. The preparation kinetics was studied in detail in terms of percentage yield and particle size variation. Low glass transition temperature (~ ?65°C) associated with high flexibility did not allow electron micrographic observation though 1H‐NMR and particle size measurement confirmed the formation of PLMA latex. To improve the glass transition temperature, aqueous emulsion copolymerization of LMA with methyl methacrylate (MMA) was carried out. The solubility of LMA was improved by adding ethanol to the aqueous phase. Two types of polymeric stabilizers, PVA and poly(vinyl pyrrolidone) (PVP) were used to stabilize the colloidal particles. The nature of the stabilizer affected both morphology and final rate of polymerization. The hydrophobic P(LMA‐MMA) copolymer particles were subsequently modified by nanosized magnetic (Fe3O4) particles by two different methods. The in situ formation of Fe3O4 particles in presence of P(LMA‐MMA) was found to be suitable for the preparation of magnetic latex particles. Scanning electron microscope (SEM), FTIR, transmission electron microscope (TEM), X‐ray diffraction (XRD) and energy‐dispersive X‐ray spectroscopy (EDX) were used for the characterization of magnetically doped particles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
A new catalyst system is developed for regiocontrolled synthesis of poly(2,5‐dialkyl‐1,4‐phenylene oxide)s by oxidative coupling polymerization of 2,5‐dialkylphenol. The treatment of the α‐benzoin oxime with manganese chloride in methanol under basic condition led to the formation of manganese benziloxime complex in which α‐benzoin oxime was converted to benziloxime and coordinated to manganese as bidentate ligands. The polymerizations were conducted in toluene using manganese benziloxime complex and dibutylamine in a continuous flow of oxygen, and the structures, properties of the catalyst, and polymers were studied by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC). The catalyst showed high regioselectivity and reasonably good yields to afford the poly(2,5‐dimethyl‐1,4‐phenylene oxide)s with 1,4‐C‐O linkage structure which possessed melting point higher than the poly(p‐phenylene sulfide) or type II liquid crystalline polymer. The regioselectivity was enhanced when employing molecular sieves‐supported manganese catalyst system at 90°C and the crystallinity of poly(2,5‐dimethyl‐1,4‐phenylene oxide)s was estimated by wide‐angle X‐ray scattering (WAXS) and DSC. The crystallinity was calculated about 23.7% and a heat‐reversible melting and crystallization behavior occurred at 327.8 and 306.8°C, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A new comb‐shaped copolymer was synthesized by free radical copolymerization of 2‐acrylamide‐2‐methyl propane sulfonic acid, acrylamide, N‐vinyl‐2‐pyrrolidone, and allyl polyoxyethylene ether (APEG) monomers. The copolymer was evaluated as a filtrate loss reducer in water‐based drilling fluid at 180 °C environment, and found to work well without causing high viscosity effect. Composition of the copolymer was determined by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. FTIR, X‐ray diffraction,, and environmental scanning electron microscopy characterizations were used to probe the filtrate loss mechanism of the comb‐shaped copolymer. Thermogravimetry and differential scanning calorimetry results showed that thermal degradation of the copolymer is not obvious before 293.6 °C. The copolymer is found to be superior to its commercially available counterparts for controlling filtrate loss volume and maintaining a steady viscosity after 180 °C aging. Higher content of APEG in the copolymer helps maintain rheological properties of the drilling fluid after aging and reduces filtrate loss volume. The morphology of the copolymer in aqueous solution displays a comb‐shaped 3D structure and shows clear adsorption onto clay particles. The working mechanism for copolymer is that anchoring groups bind the copolymer onto clay particles through different binding mechanisms, while colloidal suspension stability is achieved by steric hindrance and electrostatic repulsion, as well as through PEG segment intercalation into clay lamellae. The copolymer is able to cover and seal the micro‐holes in the mud cake even at high temperature to reduce permeability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45989.  相似文献   

14.
The chemical composition and fiber morphology of Caragana korshinskii were investigated in this study. Isolation of cellulose was performed in a nonsulfur acetic acid/nitric acid system under various conditions. The influence of three factors, i.e., nitric acid concentration (0, 2, 4, 6, 8, or 10%), temperature (95, 100, 110, 115, 120, or 130°C), and reaction time (30, 40, 50, 60, or 90 min) on the cellulose properties (viscosity, yield, and molecular weight) was studied. The cellulose isolated was characterized by using Fourier transform infrared, gas chromatography, high performance liquid chromatography, solid‐state cross‐polarization magic angle spinning carbon‐13 nuclear magnetic resonance, wide‐angle X‐ray diffraction, and thermogravimetric analysis/differential scanning calorimetry techniques. The results showed that the treatment using 80% acetic acid and nitric acid as a catalyst under the given conditions resulted in slight acetylation of the cellulose and increased the degree of crystallinity of cellulose except for significant degradation of lignin and hemicellulosic polymers. The thermal stability of the cellulose declined with an increase in nitric acid concentration. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3251–3263, 2006  相似文献   

15.
A mesoporous silica (SBA‐15)‐supported pyrimidine‐substituted N‐heterocyclic carbene iridium complex was prepared and used as a catalyst for both environmentally friendly N‐alkylation of amines and β‐alkylation of secondary alcohols with primary alcohols. The structure of the supported iridium catalyst was characterized by Fourier transform infrared (FT‐IR), 13C and 29Si solid‐state nuclear magnetic resonance (NMR), small‐angle X‐ray scattering (SAXS), transmission electron microscopy (TEM), iridium K‐edge X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine structure (EXAFS) spectroscopic analyses which demonstrated that the coordination environment of the iridium centre and the 3‐dimensional‐hexagonal pore structure of SBA‐15 were retained after the immobilization. The catalyst was found to be highly efficient for both kinds of reaction on a wide range of substrates under mild conditions. Moreover, the supported iridium catalyst was obviously superior to the unsupported one in the N‐alkylation of aniline and β‐alkylation of 1‐phenylethanol with benzyl alcohol as substrate, which indicated that not only the iridium complex moiety but also the support material contributed to the catalytic activity of the supported iridium catalyst in these reactions. The supported iridium catalyst can be easily recycled by simple washing without chemical treatment, and exhibited excellent recycling performance without notable decrease in catalytic efficiency even after twelve test cycles for N‐alkylation of aniline with benzyl alcohol, nine cycles for N‐alkylation of different amines with different alcohols, and eight cycles for β‐alkylation of 1‐phenylethanol with benzyl alcohol, respectively.  相似文献   

16.
Melamine based porous polymer (MPP) was prepared as a template solid to incorporate Cu(I) cations into the framework through chelating with nitrogen groups of the melamine. The copper integrated porous material (Cu(I)@MPP) was used as a heterogeneous catalyst and displayed high activity in copper catalyzed atom transfer radical polymerization of methyl methacrylate. The characterization of the Cu(I)@MPP was performed using nitrogen adsorption experiments and wide‐angle X‐ray and Fourier transform infrared spectroscopies. The atomic absorption spectroscopy measurements confirmed that the catalyst is practically non‐leaching and Cu(I) was found to be below 20 ppb after each atom transfer radical polymerization. Moreover, the catalyst showed reusability without any significant change in its activity. © 2017 Society of Chemical Industry  相似文献   

17.
We propose here, a novel technique to synthesize high molecular weight (MW) poly (L ‐lactic acid)‐clay nanocomposite (PLACN), via solid state polymerization (SSP). We synthesize prepolymer of PLACN (pre‐PLACN) from both, L ‐lactic acid and L ‐lactide, as starting materials. Synthesis of pre‐PLACN from L ‐lactic acid is carried out via in situ melt polycondensation (MP) of L ‐lactic acid oligomer, followed by SSP, to achieve high MW PLACN (Mw ∼ 138,000 Da). In case of L ‐lactide as the starting material, we prepare L ‐lactide–clay intercalated mixture which yields moderate MW pre‐PLACN during subsequent ring opening polymerization (ROP). Interestingly, ROP is performed by using hydroxyl functionalized ternary catalyst system (L ‐lactide–Sn(II) octoate–oligo (L‐lactic acid) complex), which provides the terminal hydroxyl end‐groups, required for step‐growth SSP. Pre‐PLACN MW is now increased to Mw ∼ 127,000 Da, by the subsequent SSP process. 1H NMR analyses confirm that these end‐groups, are indeed consumed during SSP. During SSP, the PLACN also achieves up to 90% crystallinity, which may be due to the synchronization of the slow step‐growth SSP of poly(L ‐lactic acid) (PLA) with the crystallization kinetics. Optical purity of PLACNs is similar to that of neat PLA, whereas the thermal stability of PLACNs is significantly superior. As evidenced by wide‐angle X‐ray scattering/small‐angle X‐ray scattering analyses and in line with the literature, both, intercalated and exfoliated PLACN morphologies, have been synthesized, by suitable selection of clays. We also verify the correlation between the PLA semicrystalline morphology and the PLACN morphology, which is consistent with those of PLACN synthesized by other techniques. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
F. Wang  Y. Zheng  Y. Guo 《Fuel Cells》2010,10(6):1100-1107
Well‐dispersed PtSnEu/C and PtSn/C catalysts were prepared by the impregnation–reduction method using formic acid as a reductant and characterised by X‐ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersion X‐ray spectroscopy (EDX) and X‐ray photoelectron spectroscopy (XPS). The synthesised catalysts with different atomic ratios of Pt/Sn/Eu have the Pt face centered cubic (fcc) structure and their particle sizes are 3–4 nm. The PtSnEu/C catalyst is composed of many Pt (0), SnO2, Eu(OH)3, a small amount of Pt(II) and partly alloyed PtSn, but no metallic Eu. The electrochemical measurements indicate that in comparison with Pt3Sn1/C catalyst, the Pt3Sn1Eu1/C catalyst for ethanol oxidation has more negative onset potential, smaller apparent activation energy and lower electrochemical impedance so that it exhibits very high catalytic activity. Its peak current density increases by 135% and 40%, compared with Pt3Sn1/C and Pt1Ru1/C (JM) catalysts, respectively. This is because the Eu(OH)3 formed by adding Eu to PtSn/C catalyst can provide the OH group which is in favour of the removal of adsorbed intermediates and ethanol oxidation.  相似文献   

20.
The influence of cooling rates on the thermal behavior and solid‐state morphologies of polyhydroxyalkanoates have been investigated. The thermal behavior was studied by differential scanning calorimetry (DSC). The crystal structures (~ Å), lamellar (tens of nanometers), fibrillar (several hundred nanometers), and spherulitic (~ μm) morphologies of poly (3‐hydroxybutyrate) (PHB) and the copolymers of poly (3‐hydroxybutyric acid‐co‐3‐hydroxyvaleric acid) (PHBV) and poly (3‐hydroxybutyric acid‐co‐3‐hydroxyhexanoic acid) (PHBHx) crystallized under different cooling rates were studied using simultaneous small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering, simultaneous ultra small angle X‐ray scattering (USAXS) and SAXS, and polarized optical microscopy, respectively. The experimental results showed that the lamellar and spherulitic morphologies depended strongly on cooling rates. However, there was little influence of cooling rates on the crystal structures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号