首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
According to several animal and human studies, vitamin D appears to play a significant role in the development of diabetic nephropathy. However, the possible renoprotective effect of vitamin D and its influence on the reversal of already existing renal damage remains doubtful. At this moment, there are a few hypotheses concerning the underlying molecular and genetic mechanisms including the link between vitamin D and inflammation, oxidative stress, and extracellular matrix accumulation. The present review aims to investigate the potential role of vitamin D in the development of diabetic kidney disease from a translational approach.  相似文献   

2.
To analyze the association between non-alcoholic fatty liver disease (NAFLD) and the incidence of diabetic nephropathy in patients with type 2 diabetes, the incidence of diabetic nephropathy was assessed in 413 type 2 diabetic patients, by testing the 24 h urinary albumin excretion rate (UAER). The NAFLD was diagnosed based on patient’s medical history and liver ultrasound. The difference in diabetic nephropathy incidence between patients with and without NAFLD was tested by χ2. Multivariate logistic regression analysis was used to assess the factors associated with diabetic nephropathy among type 2 diabetic patients. Total 363 out of 413 type 2 diabetic patients were enrolled in this study. The incidences of NAFLD and diabetic nephropathy in participants were approximately 56% (202/363) and 38% (137/363) respectively, and there was no significant difference in the prevalence of diabetic nephropathy between patients with and without NAFLD (37.1% vs. 38.5%, p = 0.787). The duration of diabetes (odds ratio [OR] 1.065, 95% confidence interval [CI] 1.014–1.120, p = 0.012), waist circumference (OR 1.077, 95% CI 1.040–1.116, p = 0.000), and fasting blood glucose (FBG; OR 1.136, 95% CI 1.023–1.1262, p = 0.017) were significantly associated with diabetic nephropathy, whereas sex, high blood pressure, total cholesterol (TC), triglyceride (TG), and ankle brachial pressure index (ABI) were not significantly associated with the disorder. The present results suggest that NAFLD is not related to the incidence of diabetic nephropathy in type 2 diabetes, but the duration of diabetes, waist circumference, and FBG are important factors for diabetic nephropathy in type 2 diabetes.  相似文献   

3.
The homeostasis of NAD+ anabolism is indispensable for maintaining the NAD+ pool. In mammals, the mainly synthetic pathway of NAD+ is the salvage synthesis, a reaction catalyzed by nicotinamide mononucleotide adenylyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase (NMNATs) successively, converting nicotinamide (NAM) to nicotinamide mononucleotide (NMN) and NMN to NAD+, respectively. However, the relationship between NAD+ anabolism disturbance and diabetic nephropathy (DN) remains elusive. Here our study found that the disruption of NAD+ anabolism homeostasis caused an elevation in both oxidative stress and fibronectin expression, along with a decrease in Sirt1 and an increase in both NF-κB P65 expression and acetylation, culminating in extracellular matrix deposition and globular fibrosis in DN. More importantly, through constitutively overexpressing NMNAT1 or NAMPT in human mesangial cells, we revealed NAD+ levels altered inversely with NMN levels in the context of DN and, further, their changes affect Sirt1/NF-κB P65, thus playing a crucial role in the pathogenesis of DN. Accordingly, FK866, a NAMPT inhibitor, and quercetin, a Sirt1 agonist, have favorable effects on the maintenance of NAD+ homeostasis and renal function in db/db mice. Collectively, our findings suggest that NMN accumulation may provide a causal link between NAD+ anabolism disturbance and diabetic nephropathy (DN) as well as a promising therapeutic target for DN treatment.  相似文献   

4.
Sodium glucose cotransporter-2 (SGLT2) inhibitors inhibit the development of diabetic nephropathy (DN). We determined whether changes in perirenal fat (PRAT) by a SGLT2 inhibitor ipragliflozin (Ipra) contribute to the suppression of DN development. High-fat diet (HFD)-fed mice were used as a DN model and were treated with or without Ipra for 6 weeks. Ipra treatment reduced urinary albumin excretion (UAE) and glomerular hypertrophy in HFD-fed mice. In the PRAT of Ipra-treated mice, adipocyte size was increased, and inflammation, fibrosis, and adipocyte death were suppressed. In conditioned medium made from PRAT (PRAT-CM) of Ipra-treated mice, the concentration of leptin was significantly lower than PRAT-CM of mice without Ipra treatment. Serum leptin concentration in renal vein positively correlated with UAE. PRAT-CM from HFD-fed mice showed greater cell proliferation signaling in mouse glomerular endothelial cells (GECs) than PRAT-CM from standard diet-fed mice via p38MAPK and leptin-dependent pathways, whose effects were significantly attenuated in PRAT-CM from Ipra-treated mice. These findings suggest that Ipra-induced PRAT expansion may play an important role in the improvement of DN in HFD-fed mice. In vitro experiments suggest that reduced PRAT-derived leptin by Ipra could inhibit GECs proliferation, possibly contributing to the suppression of DN development.  相似文献   

5.
Diabetic kidney disease (DKD) frequently leads to end-stage renal disease and other life-threatening illnesses. The dysregulation of glomerular cell types, including mesangial cells, endothelial cells, and podocytes, appears to play a vital role in the development of DKD. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory and anti-inflammatory properties through the depletion of L-arginine that is required by T cells, through generation of oxidative stress, interference with T-cell recruitment and viability, proliferation of regulatory T cells, and through the promotion of pro-tumorigenic functions. Under hyperglycemic conditions, mouse mesangial cells reportedly produce higher levels of fibronectin and pro-inflammatory cytokines. Moreover, the number of MDSCs is noticeably decreased, weakening inhibitory immune activities, and creating an inflammatory environment. In diabetic mice, immunotherapy with MDSCs that were induced by a combination of granulocyte-macrophage colony-stimulating factor, interleukin (IL)-1β, and IL-6, reduced kidney to body weight ratio, fibronectin expression, and fibronectin accumulation in renal glomeruli, thus ameliorating DKD. In conclusion, MDSCs exhibit anti-inflammatory activities that help improve renal fibrosis in diabetic mice. The therapeutic targeting of the proliferative or immunomodulatory pathways of MDSCs may represent an alternative immunotherapeutic strategy for DKD.  相似文献   

6.
Nowadays, type II diabetes mellitus, more specifically ensuing diabetic nephropathy, and severe COVID-19 disease are known to be closely associated. The exact mechanisms behind this association are less known. An implication for the angiotensin-converting enzyme 2 remains controversial. Some researchers have started looking into other potential actors, such as neuropilin-1, mitochondrial glutathione, vitamin D, and DPP4. In particular, neuropilin-1 seems to play an important role in the underlying mechanism linking COVID-19 and diabetic nephropathy. We suggest, based on the findings in this review, that its up-regulation in the diabetic kidney facilitates viral entry in this tissue, and that the engagement of both processes leads to a depletion of neuropilin-1, which was demonstrated to be strongly associated with the pathogenesis of DN. More studies are needed to confirm this hypothesis, and research should be directed towards elucidating the potential roles of all these suggested actors and eventually discovering new therapeutic strategies that could reduce the burden of COVID-19 in patients with diabetic nephropathy.  相似文献   

7.
Diabetes mellitus represents a growing concern, both for public economy and global health. In fact, it can lead to insidious macrovascular and microvascular complications, impacting negatively on patients’ quality of life. Diabetic patients often present diabetic kidney disease (DKD), a burdensome complication that can be silent for years. The average time of onset of kidney impairment in diabetic patients is about 7–10 years. The clinical impact of DKD is dangerous not only for the risk of progression to end-stage renal disease and therefore to renal replacement therapies, but also because of the associated increase in cardiovascular events. An early recognition of risk factors for DKD progression can be decisive in decreasing morbidity and mortality. DKD presents patient-related, clinician-related, and system-related issues. All these problems are translated into therapeutic inertia, which is defined as the failure to initiate or intensify therapy on time according to evidence-based clinical guidelines. Therapeutic inertia can be resolved by a multidisciplinary pool of healthcare experts. The timing of intensification of treatment, the transition to the best therapy, and dietetic strategies must be provided by a multidisciplinary team, driving the patients to the glycemic target and delaying or overcoming DKD-related complications. A timely nephrological evaluation can also guarantee adequate information to choose the right renal replacement therapy at the right time in case of renal impairment progression.  相似文献   

8.
Renal disease is a major public health challenge since its prevalence has continuously increased over the last decades. At the end stage, extrarenal replacement therapy and transplantation remain the only treatments currently available. To understand how the disease progresses, further knowledge of its pathophysiology is needed. For this purpose, experimental models, using mainly rodents, have been developed to unravel the mechanisms involved in the initiation and progression of renal disease, as well as to identify potential targets for therapy. The gap junction protein connexin 43 has recently been identified as a novel player in the development of kidney disease. Its expression has been found to be altered in many types of human renal pathologies, as well as in different animal models, contributing to the activation of inflammatory and fibrotic processes that lead to renal damage. Furthermore, Cx43 genetic, pharmacogenetic, or pharmacological inhibition preserved renal function and structure. This review summarizes the existing advances on the role of this protein in renal diseases, based mainly on different in vivo animal models of acute and chronic renal diseases.  相似文献   

9.
The latest meta-analysis of genome-wide linkage studies (GWLS) identified nine cytogenetic locations suggestive of a linkage with diabetic nephropathy (DN) due to type 1 diabetes mellitus (T1DM) and seven locations due to type 2 diabetes mellitus (T2DM). In order to gain biological insight about the functional role of the genes located in these regions and to prioritize the most significant genetic loci for further research, we conducted a gene ontology analysis with an over representation test for the functional annotation of the protein coding genes. Protein analysis through evolutionary relationships (PANTHER) version 16.0 software and Cytoscape with the relevant plugins were used for the gene ontology analysis, and the overrepresentation test and STRING database were used for the construction of the protein network. The findings of the over-representation test highlight the contribution of immune related molecules like immunoglobulins, cytokines, and chemokines with regard to the most overrepresented protein classes, whereas the most enriched signaling pathways include the VEGF signaling pathway, the Cadherin pathway, the Wnt pathway, the angiogenesis pathway, the p38 MAPK pathway, and the EGF receptor signaling pathway. The common section of T1DM and T2DM results include the significant over representation of immune related molecules, and the Cadherin and Wnt signaling pathways that could constitute potential therapeutic targets for the treatment of DN, irrespective of the type of diabetes.  相似文献   

10.
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial due to the diverse role of TGF-β1 in DN. Thus, understanding the regulatory role and mechanisms of TGF-β in the pathogenesis of DN is the initial step towards the development of anti-TGF-β treatment for DN. In this review, we first discuss the diverse roles and signaling mechanisms of TGF-β in DN by focusing on the latent versus active TGF-β1, the TGF-β receptors, and the downstream individual Smad signaling molecules including Smad2, Smad3, Smad4, and Smad7. Then, we dissect the regulatory mechanisms of TGF-β/Smad signaling in the development of DN by emphasizing Smad-dependent non-coding RNAs including microRNAs and long-non-coding RNAs. Finally, the potential therapeutic strategies for DN by targeting TGF-β signaling with various therapeutic approaches are discussed.  相似文献   

11.
Ophiopogon japonicus is a traditional Chinese medicine that might be effective for treating type 2 diabetes. Recent research confirmed that MDG-1, a polysaccharide from O. japonicas, activates the PI3K/Akt signaling pathway and improves insulin sensitivity in a diabetic KKAy mouse model, but little is known about its effects on diabetic nephropathy. In this study, KKAy mice were orally administered distilled water (control group), MDG-1, or rosiglitazone for 12 weeks. Blood glucose levels were tested every two weeks for the fed mice. At 6 and 12 weeks, blood samples were collected for biochemical examination. At the end of the experiment, all kidney tissues were collected for histological examination and western blot analysis. Results show that MDG-1 (300 mg/kg) significantly decreased the levels of blood glucose, triglycerides, blood urine nitrogen and albumin, and significantly inhibited the expression of transforming growth factor-beta 1 and connective tissue growth factor. Moreover, MDG-1 could alleviate glomerular mesangial expansion and tubulointerstitial fibrosis in the diabetic mice, as confirmed by histopathological examination. These data indicated that MDG-1 ameliorates renal disease in diabetic mice by reducing hyperglycemia, hyperinsulinemia, and hyperlipidemia, and by inhibiting intracellular signaling pathways.  相似文献   

12.
Renal fibrosis (RF) constitutes the common end-point of all kinds of chronic kidney disease (CKD), regardless of the initial cause of disease. The aim of the present study was to identify the key players of fibrosis in the context of diabetic nephropathy (DN). A systematic review and meta-analysis of all available genetic association studies regarding the genes that are included in signaling pathways related to RF were performed. The evaluated studies were published in English and they were included in PubMed and the GWAS Catalog. After an extensive literature review and search of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, eight signaling pathways related to RF were selected and all available genetic association studies of these genes were meta-analyzed. ACE, AGT, EDN1, EPO, FLT4, GREM1, IL1B, IL6, IL10, IL12RB1, NOS3, TGFB1, IGF2/INS/TH cluster, and VEGFA were highlighted as the key genetic components driving the fibrosis process in DN. The present systematic review and meta-analysis indicate, as key players of fibrosis in DN, sixteen genes. However, the results should be interpreted with caution because the number of studies was relatively small.  相似文献   

13.
Treatments with sodium–glucose 2 cotransporter inhibitors (SGLT2i) or endothelin receptor antagonists (ERA) have shown cardiorenal protective effects. The present study aimed to evaluate the cardiorenal beneficial effects of the combination of SGLT2i and ERA on top of renin–angiotensin system (RAS) blockade. Type 2 diabetic mice (db/db) were treated with different combinations of an SGLT2i (empagliflozin), an ERA (atrasentan), and an angiotensin-converting enzyme inhibitor (ramipril) for 8 weeks. Vehicle-treated diabetic mice and non-diabetic mice were included as controls. Weight, blood glucose, blood pressure, and kidney and heart function were monitored during the study. Kidneys and heart were collected for histological examination and to study the intrarenal RAS. Treatment with empagliflozin alone or combined significantly decreased blood glucose compared to vehicle-treated db/db. The dual and triple therapies achieved significantly greater reductions in diastolic blood pressure than ramipril alone. Compared to vehicle-treated db/db, empagliflozin combined with ramipril or in triple therapy significantly prevented GFR increase, but only the triple combination exerted greater protection against podocyte loss. In the heart, empagliflozin alone or combined reduced cardiac isovolumetric relaxation time (IVRT) and left atrium (LA) diameter as compared to vehicle-treated db/db. However, only the triple therapy was able to reduce cardiomyocyte area. Importantly, the add-on triple therapy further enhanced the intrarenal ACE2/Ang(1-7)/Mas protective arm of the RAS. These data suggest that triple therapy with empagliflozin, atrasentan and ramipril show synergistic cardiorenal protective effects in a type 2 diabetic mouse model.  相似文献   

14.
Although recent studies have proven that renin-angiotensin system (RAS) blockades retard the progression of diabetic nephropathy, the detailed mechanisms of their reno-protective effects on the development of diabetic nephropathy remain uncertain. In rodent models, it has been reported that reactive oxygen species (ROS) are important for intrarenal angiotensinogen (AGT) augmentation in the progression of diabetic nephropathy. However, no direct evidence is available to demonstrate that AGT expression is enhanced in the kidneys of patients with diabetes. To examine whether the expression levels of ROS- and RAS-related factors in kidneys are increased with the progression of diabetic nephropathy, biopsied samples from 8 controls and 27 patients with type 2 diabetes were used. After the biopsy, these patients were diagnosed with minor glomerular abnormality or diabetes mellitus by clinical and pathological findings. The intensities of AGT, angiotensin II (Ang II), 4-hydroxy-2-nonenal (4-HNE), and heme oxygenase-1 (HO-1) were examined by fluorescence in situ hybridization and/or immunohistochemistry. Expression levels were greater in patients with diabetes than in control subjects. Moreover, the augmented intrarenal AGT mRNA expression paralleled renal dysfunction in patients with diabetes. These data suggest the importance of the activated oxidative stress/AGT/RAS axis in the pathogenesis of diabetic nephropathy.  相似文献   

15.
Hematuria is an essential symptom of immunoglobulin A nephropathy (IgAN). Although the etiology of hematuria in IgAN has not been fully elucidated, it is thought that the rupture of the glomerular basement membranes caused by intra-capillary leukocyte influx, so-called glomerular vasculitis, is the pathological condition responsible for severe hematuria. Glomerular vasculitis are active lesions that exist in the glomeruli of acute phase IgAN and it is important because it is suspected to make the transition to segmental glomerular sclerosis (SGS) as a repair scar lesion in the chronic phase, and the progression of SGS would eventually lead to glomerular obsolescence. Worsening of hematuria concomitant with acute pharyngitis is common in patients with IgAN; therefore, elucidating the relationship between the immune system of Waldeyer’s ring, including the palatine tonsil and epipharyngeal lymphoid tissue, and the glomerular vasculitis may lead to understanding the nature of IgAN. The epipharynx is an immunologically activated site even under normal conditions, and enhanced activation of innate immunity is likely to occur in response to airborne infection. Hyperactivation of innate immunity via upregulation of Toll-like receptors in the interfollicular area of the palatine tonsil and epipharyngeal lymphoid tissue, followed by enhanced fractalkine/CX3CR1 interactions, appears to play an important role in the development of glomerular vasculitis in IgAN. As latent but significant epipharyngitis is present in most patients with IgAN, it is plausible that acute upper respiratory infection may contribute as a trigger for the innate epipharyngeal immune system, which is already upregulated in a chronically inflamed environment. Given that epipharyngitis and its effects on IgAN are not fully understood, we propose that the so-called “epipharynx–kidney axis” may provide an important focus for future research.  相似文献   

16.
Diabetic nephropathy (DN) exacerbates renal tissue damage and is a major cause of end-stage renal disease. Reactive oxygen species play a vital role in hyperglycemia-induced renal injury. This study examined whether the oral hypoglycemic drug acarbose (Ab) could attenuate the progression of DN in type 2 diabetes mellitus mice. In this study, 50 mg/kg body weight of Ab was administered to high-fat diet (HFD)-fed db/db mice. Their body weight was recorded every week, and the serum glucose concentration was monitored every 2 weeks. Following their euthanasia, the kidneys of mice were analyzed through hematoxylin and eosin, periodic acid Schiff, Masson’s trichrome, and immunohistochemistry (IHC) staining. The results revealed that Ab stabilized the plasma glucose and indirectly improved the insulin sensitivity and renal functional biomarkers in diabetic mice. In addition, diabetes-induced glomerular hypertrophy, the saccharide accumulation, and formation of collagen fiber were reduced in diabetic mice receiving Ab. Although the dosages of Ab cannot decrease the blood sugar in db/db mice, our results indicate that Ab alleviates glucolipotoxicity-induced DN by inhibiting kidney fibrosis-related proteins through the Ras/ERK pathway.  相似文献   

17.
Diabetic kidney disease is a microvascular complication that occurs in patients with diabetes. It is strongly associated with increased risk of kidney replacement therapy and all-cause mortality. Incretins are peptide hormones derived from the gastrointestinal tract, that besides causing enhancement of insulin secretion after oral glucose intake, participate in many other metabolic processes. Antidiabetic drug classes, such as dipeptidyl peptidase 4 inhibitors and glucagon-like peptide receptor agonists, which way of action is based on incretins facility, not only show glucose-lowering properties but also have nephroprotective functions. The aim of this article is to present the latest information about incretin-based therapy and its influence on diabetic kidney disease appearance and progression, point its potential mechanisms of kidney protection and focus on future therapeutic possibilities bound with these two antidiabetic drug classes.  相似文献   

18.
Follicular dendritic cell (FDC) proliferation in angioimmunoblastic T-cell lymphoma (AITL) is still not well defined, challenging the accurate differential diagnosis between the AITL with expanded follicular dendritic cell meshwork and the combined AITL and follicular dendritic cell sarcoma (FDCS). Herein, we reported the case of a 58-year-old male with coexisting SARS-CoV-2 infection and AITL with an exuberant CD30-positive FDC proliferation, in which genetic analysis identified mutations of genes commonly involved in AITL but not in FDC sarcoma (i.e., RHOA, TET2, DNMT3A, and IDH2), thus supporting the reactive nature of the CD30-positive FDC expansion.  相似文献   

19.
Diabetic retinopathy is characterized by dysfunction of the retinal vascular network, combined with a persistent low-grade inflammation that leads to vision-threatening complications. Netrin-4 (NTN4) is a laminin-related secreted protein and guidance cue molecule present in the vascular basal membrane and highly expressed in the retina. A number of studies inferred that the angiogenic abilities of NTN4 could contribute to stabilize vascular networks and modulate inflammation. Analyzing human specimens, we show that NTN4 and netrin receptors are upregulated in the diabetic retina. We further evaluated a knock-out model for NTN4 undergoing experimental diabetes induced by streptozotocin. We investigated retina function and immune cells in vivo and demonstrated that NTN4 provides a protective milieu against inflammation in the diabetic retina and prevents cytokine production.  相似文献   

20.
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage kidney disease. Renin–angiotensin system inhibitors such as losartan are the predominant therapeutic options in clinical practice to treat DKD. Therefore, it is necessary to identify DKD-related metabolic profiles that are affected by losartan. To investigate the change in metabolism associated with the development of DKD, we performed global and targeted metabolic profiling using 800 MHz nuclear magnetic resonance spectroscopy of urine samples from streptozotocin-induced diabetic mice (DM) with or without losartan administration. A principal component analysis plot showed that the metabolic pattern in the losartan-treated diabetic mice returned from that in the DM group toward that in the control mice (CM). We found that 33 urinary metabolites were significantly changed in DM compared with CM, and the levels of 16 metabolites among them, namely, glucose, mannose, myo-inositol, pyruvate, fumarate, 2-hydroxyglutarate, isobutyrate, glycine, threonine, dimethylglycine, methyldantoin, isoleucine, leucine, acetylcarnitine, 3-hydroxy-3-methylglutarate, and taurine, shifted closer to the control level in response to losartan treatment. Pathway analysis revealed that these metabolites were associated with branched-chain amino acid degradation; taurine and hypotaurine metabolism; glycine, serine, and threonine metabolism; the tricarboxylic acid cycle; and galactose metabolism. Our results demonstrate that metabolomic analysis is a useful tool for identifying the metabolic pathways related to the development of DKD affected by losartan administration and may contribute to the discovery of new therapeutic agents for DKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号