首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autism spectrum disorder (ASD) is an umbrella term encompassing several neurodevelopmental disorders such as Asperger syndrome or autism. It is characterised by the occurrence of distinct deficits in social behaviour and communication and repetitive patterns of behaviour. The symptoms may be of different intensity and may vary in types. Risk factors for ASD include disturbed brain homeostasis, genetic predispositions, or inflammation during the prenatal period caused by viruses or bacteria. The number of diagnosed cases is growing, but the main cause and mechanism leading to ASD is still uncertain. Recent findings from animal models and human cases highlight the contribution of glia to the ASD pathophysiology. It is known that glia cells are not only “gluing” neurons together but are key players participating in different processes crucial for proper brain functioning, including neurogenesis, synaptogenesis, inflammation, myelination, proper glutamate processing and many others. Despite the prerequisites for the involvement of glia in the processes related to the onset of autism, there are far too little data regarding the engagement of these cells in the development of ASD.  相似文献   

2.
The correlation between dysfunction in the glutamatergic system and neuropsychiatric disorders, including schizophrenia and autism spectrum disorder, is undisputed. Both disorders are associated with molecular and ultrastructural alterations that affect synaptic plasticity and thus the molecular and physiological basis of learning and memory. Altered synaptic plasticity, accompanied by changes in protein synthesis and trafficking of postsynaptic proteins, as well as structural modifications of excitatory synapses, are critically involved in the postnatal development of the mammalian nervous system. In this review, we summarize glutamatergic alterations and ultrastructural changes in synapses in schizophrenia and autism spectrum disorder of genetic or drug-related origin, and briefly comment on the possible reversibility of these neuropsychiatric disorders in the light of findings in regular synaptic physiology.  相似文献   

3.
4.
Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with complex genetic etiology. Recent studies have indicated that children with ASD may have altered folate or methionine metabolism, suggesting that the folate–methionine cycle may play a key role in the etiology of ASD. SLC19A1, also referred to as reduced folate carrier 1 (RFC1), is a member of the solute carrier group of transporters and is one of the key enzymes in the folate metabolism pathway. Findings from multiple genomic screens suggest the presence of an autism susceptibility locus on chromosome 21q22.3, which includes SLC19A1. Therefore, we performed a case-control study in a Japanese population. In this study, DNA samples obtained from 147 ASD patients at the Kanazawa University Hospital in Japan and 150 unrelated healthy Japanese volunteers were examined by the sequence-specific primer-polymerase chain reaction method pooled with fluorescence correlation spectroscopy. p < 0.05 was considered to represent a statistically significant outcome. Of 13 single nucleotide polymorphisms (SNPs) examined, a significant p-value was obtained for AA genotype of one SNP (rs1023159, OR = 0.39, 95% CI = 0.16–0.91, p = 0.0394; Fisher’s exact test). Despite some conflicting results, our findings supported a role for the polymorphism rs1023159 of the SLC19A1 gene, alone or in combination, as a risk factor for ASD. However, the findings were not consistent after multiple testing corrections. In conclusion, although our results supported a role of the SLC19A1 gene in the etiology of ASD, it was not a significant risk factor for the ASD samples analyzed in this study.  相似文献   

5.
(1) Background: Atypical auditory perception has been reported in individuals with autism spectrum disorder (ASD). Altered auditory evoked brain responses are also associated with childhood ASD. They are likely to be associated with atypical brain maturation. (2) Methods: This study examined children aged 5–8 years old: 29 with ASD but no intellectual disability and 46 age-matched typically developed (TD) control participants. Using magnetoencephalography (MEG) data obtained while participants listened passively to sinusoidal pure tones, bilateral auditory cortical response (P1m) was examined. (3) Results: Significantly shorter P1m latency in the left hemisphere was found for children with ASD without intellectual disabilities than for children with TD. Significant correlation between P1m latency and language conceptual ability was found in children with ASD, but not in children with TD. (4) Conclusions: These findings demonstrated atypical brain maturation in the auditory processing area in children with ASD without intellectual disability. Findings also suggest that ASD has a common neural basis for pure-tone sound processing and language development. Development of brain networks involved in language concepts in early childhood ASD might differ from that in children with TD.  相似文献   

6.
Autism spectrum disorder is a common, heterogeneous neurodevelopmental disorder lacking targeted treatments. Additional features include restricted, repetitive patterns of behaviors and differences in sensory processing. We hypothesized that detailed sensory features including modality specific hyper- and hypo-sensitivity could be used to identify clinically recognizable subgroups with unique underlying gene variants. Participants included 378 individuals with a clinical diagnosis of autism spectrum disorder who contributed Short Sensory Profile data assessing the frequency of sensory behaviors and whole genome sequencing results to the Autism Speaks’ MSSNG database. Sensory phenotypes in this cohort were not randomly distributed with 10 patterns describing 43% (162/378) of participants. Cross comparison of two independent cluster analyses on sensory responses identified six distinct sensory-based subgroups. We then characterized subgroups by calculating the percent of patients in each subgroup who had variants with a Combined Annotation Dependent Depletion (CADD) score of 15 or greater in each of 24,896 genes. Each subgroup exhibited a unique pattern of genes with a high frequency of variants. These results support the use of sensory features to identify autism spectrum disorder subgroups with shared genetic variants.  相似文献   

7.
The high prevalence of gastrointestinal (GI) disorders among autism spectrum disorder (ASD) patients has prompted scientists to look into the gut microbiota as a putative trigger in ASD pathogenesis. Thus, many studies have linked the gut microbial dysbiosis that is frequently observed in ASD patients with the modulation of brain function and social behavior, but little is known about this connection and its contribution to the etiology of ASD. This present review highlights the potential role of the microbiota–gut–brain axis in autism. In particular, it focuses on how gut microbiota dysbiosis may impact gut permeability, immune function, and the microbial metabolites in autistic people. We further discuss recent findings supporting the possible role of the gut microbiome in initiating epigenetic modifications and consider the potential role of this pathway in influencing the severity of ASD. Lastly, we summarize recent updates in microbiota-targeted therapies such as probiotics, prebiotics, dietary supplements, fecal microbiota transplantation, and microbiota transfer therapy. The findings of this paper reveal new insights into possible therapeutic interventions that may be used to reduce and cure ASD-related symptoms. However, well-designed research studies using large sample sizes are still required in this area of study.  相似文献   

8.
9.
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.  相似文献   

10.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Abnormal lipid metabolism has been suggested to contribute to its pathogenesis. Further exploration of its underlying biochemical mechanisms is needed. In a search for reliable biomarkers for the pathophysiology of ASD, hippocampal tissues from the ASD model BTBR T+ Itpr3tf/J (BTBR) mice and C57BL/6J mice were analyzed, using four-dimensional (4D) label-free proteomic analysis and bioinformatics analysis. Differentially expressed proteins were significantly enriched in lipid metabolic pathways. Among them, apolipoprotein A-I (ApoA-I) is a hub protein and its expression was significantly higher in the BTBR mice. The investigation of protein levels (using Western blotting) also confirmed this observation. Furthermore, expressions of SphK2 and S1P in the ApoA-I pathway both increased. Using the SphK inhibitor (SKI-II), ASD core phenotype and phenotype-related protein levels of P-CREB, P-CaMKII, and GAD1 were improved, as shown via behavioral and molecular biology experiments. Moreover, by using SKI-II, we found proteins related to the development and function of neuron synapses, including ERK, caspase-3, Bax, Bcl-2, CDK5 and KCNQ2 in BTBR mice, whose levels were restored to protein levels comparable to those in the controls. Elucidating the possible mechanism of ApoA-I in ASD-associated phenotypes will provide new ideas for studies on the etiology of ASD.  相似文献   

11.
The insulin-like growth factor (IGF) pathway is thought to play an important role in brain development. Altered levels of IGFs and their signaling regulators have been shown in autism spectrum disorder (ASD) patients. In this study, we investigated whether coding region single-nucleotide polymorphisms (cSNPs) of the insulin receptor substrates (IRS1 and IRS2), key mediators of the IGF pathway, were associated with ASD in Korean males. Two cSNPs (rs1801123 of IRS1, and rs4773092 of IRS2) were genotyped using direct sequencing in 180 male ASD patients and 147 male control subjects. A significant association between rs1801123 of IRS1 and ASD was shown in additive (p = 0.022, odds ratio (OR) = 0.66, 95% confidence interval (CI) = 0.46–0.95) and dominant models (p = 0.013, OR = 0.57, 95% CI = 0.37–0.89). Allele frequency analysis also showed an association between rs1801123 and ASD (p = 0.022, OR = 0.66, 95% CI = 0.46–0.94). These results suggest that IRS1 may contribute to the susceptibility of ASD in Korean males.  相似文献   

12.
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD.  相似文献   

13.
14.
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a small-vessel vasculitis affecting multiple organ systems, including the kidney. Small vessels in the kidney include small-sized arteries, capillaries, and venules. Intrarenal C4 deposits are now increasingly recognized as a potential marker and pathogenic mechanism of autoantibody-mediated tissue damage in ANCA-associated renal vasculitis. We here describe the relevance of complement C4 deposits localized to distinct vascular compartments in a cohort of biopsy-proven ANCA-associated renal vasculitis. A cohort of 43 biopsy-proven cases of ANCA-associated renal vasculitis with myeloperoxidase (MPO) or proteinase 3 (PR3) seropositivity were retrospectively enrolled in a single-center observational study. Univariate and multivariate regression analysis was performed to identify parameters associated with intrarenal C4 deposits in ANCA-associated renal vasculitis. We here show that C4 deposits localize to distinct vascular compartments in ANCA-associated renal vasculitis, and provide evidence for an association with better short-term survival (p = 0.008), implicating that this subgroup had a superior response to remission induction therapy. Second, C4 deposits in interlobular arteries were associated with eosinophilic infiltrates in renal vasculitis with MPO-ANCA seropositivity (p = 0.021). In renal vasculitis positive for MPO-ANCA, the absence of C4 deposits in the glomerular tuft was associated with sclerotic class ANCA-associated renal vasculitis (p < 0.001), and tubular RBC casts (p = 0.024). Fourth, complement C4 in interlobular arteries is associated with tubular atrophy specifically in renal vasculitis with PR3-ANCA seropositivity (p = 0.006). Finally, complement C4 deposits in peritubular capillaries associated specifically with hyaline casts in cases positive for PR3-ANCA (p = 0.025), implicating a role in tubular injury. Interestingly, C4 deposits were localized to distinct vascular compartments independent of the systemic activation of the complement system, reflected by the consumption of respective serum complement molecules in ANCA-associated renal vasculitis. In summary, we here show that C4 deposits localize to distinct vascular compartments in ANCA-associated renal vasculitis, and provide evidence for an association with survival and distinct histopathological lesions. Considering recent advances in AAV therapy with the emergence of new therapeutics that inhibit complement activation, we here provide novel insights into complement C4 as a potential marker to identify patients who may benefit most from these drugs. Thus, our results may contribute to a more personalized treatment approach of AAV depending on the relevance of distinct intrarenal complement deposits.  相似文献   

15.
Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder that becomes apparent during early childhood development. The complexity of ASD makes clinically diagnosing the condition difficult. Consequently, by identifying the biomarkers associated with ASD severity and combining them with clinical diagnosis, one may better factionalize within the spectrum and devise more targeted therapeutic strategies. Currently, there are no reliable biomarkers that can be used for precise ASD diagnosis. Consequently, our pilot experimental cohort was subdivided into three groups: healthy controls, individuals those that express severe symptoms of ASD, and individuals that exhibit mild symptoms of ASD. Using next-generation sequencing, we were able to identify several circulating non-coding RNAs (cir-ncRNAs) in plasma. To the best of our knowledge, this study is the first to show that miRNAs, piRNAs, snoRNAs, Y-RNAs, tRNAs, and lncRNAs are stably expressed in plasma. Our data identify cir-ncRNAs that are specific to ASD. Furthermore, several of the identified cir-ncRNAs were explicitly associated with either the severe or mild groups. Hence, our findings suggest that cir-ncRNAs have the potential to be utilized as objective diagnostic biomarkers and clinical targets.  相似文献   

16.
Molecular biology combined with genomics can be a powerful tool for developing potential intervention strategies for improving outcomes in children with autism spectrum disorders (ASD). Monogenic etiologies rarely cause autism. Instead, ASD is more frequently due to many polygenic contributing factors interacting with each other, combined with the epigenetic effects of diet, lifestyle, and environment. One limitation of genomics has been identifying ways of responding to each identified gene variant to translate the information to something clinically useful. This paper will illustrate how understanding the function of a gene and the effects of a reported variant on a molecular level can be used to develop actionable and targeted potential interventions for a gene variant or combinations of variants. For illustrative purposes, this communication highlights a specific genomic variant, SHANK3. The steps involved in developing molecularly genomically targeted actionable interventions will be demonstrated. Cases will be shared to support the efficacy of this strategy and to show how clinicians utilized these targeted interventions to improve ASD-related symptoms significantly. The presented approach demonstrates the utility of genomics as a part of clinical decision-making.  相似文献   

17.
A central part of the complement system, the anaphylatoxin C5a was investigated in this study to learn its effects on tenocytes in respect to understanding the potential expression of other crucial complement factors and pro-inflammatory mediators involved in tendinopathy. Human hamstring tendon-derived tenocytes were treated with recombinant C5a protein in concentrations of 25 ng/mL and 100 ng/mL for 0.5 h (early phase), 4 h (intermediate phase), and 24 h (late phase). Tenocytes survival was assessed after 24 h stimulation by live-dead assay. The gene expression of complement-related factors C5aR, the complement regulatory proteins (CRPs) CD46, CD55, CD59, and of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 was monitored using qPCR. Tenocytes were immunolabeled for C5aR and CD55 proteins. TNFα production was monitored by ELISA. Tenocyte survival was not impaired through C5a stimulation. Interestingly, the gene expression of C5aR and that of the CRPs CD46 and CD59 was significantly reduced in the intermediate and late phase, and that of TNFα only in an early phase, compared to the control group. ELISA analysis indicated a concomitant not significant trend of impaired TNFα protein synthesis at 4 h. However, there was also an early significant induction of CD55 and CD59 mediated by 25 ng/mL anaphylatoxin C5a. Hence, exposure of tenocytes to C5a obviously evokes a time and concentration-dependent response in their expression of complement and pro-inflammatory factors. C5a, released in damaged tendons, might directly contribute to tenocyte activation and thereby be involved in tendon healing and tendinopathy.  相似文献   

18.
Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/− mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/− mice.  相似文献   

19.
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome–host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.  相似文献   

20.
(1) The co-occurrence of AQP4 and myelin oligodendrocyte glycoprotein (MOG) antibodies in patients with demyelinating disorders is extremely rare. In addition, a concomitant involvement of the peripheral nervous system (PNS) has been described either in association with AQP4 antibodies-positive neuromyelitis optica spectrum disorder (NMOSD), or MOG-associated disease. We report on a case of NMOSD with co-occurrence of AQP4 and MOG antibodies and concomitant central and peripheral nervous system involvement. We also reviewed available cases of AQP4-MOG double-positive patients. (2) Brain and spine MRI, cerebrospinal fluid studies, and electrophysiological test were performed. Serum AQP4 and MOG positivity was assessed with live cell-based assay. (3) A 62-year-old woman presented with recurrent optic neuritis, myelitis, and radiculitis, tested positive for AQP4 and MOG antibodies, and was treated successfully with rituximab. (4) Although few cases of AQP4-MOG double-positive patients were already described mostly affecting females with a concomitant spinal cord and optical nerve involvement, we describe the first case of double-positive NMOSD with the peculiar involvement of both central and peripheral nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号