首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hierarchical porous nitrogen-doped carbon (HPNC) materials are synthesized through one-step carbonization of polyimide using triblock copolymer P123 as mesoporous template. The microstructure, chemical composition and CO2 adsorption behaviors are investigated in detail. The results show that HPNC materials have hierarchical micro-/mesopore structures, high specific surface area of 579 m2/g, large pore volume of 0.34 cm3/g, and nitrogen functional groups (5.2 %). HPNC materials exhibit high CO2 uptake of 5.56 mmol/g at 25 °C and 1 bar, which is higher than those of previously reported nitrogen-doped porous carbon materials. After 5 cycles the value of CO2 adsorption uptakes is 5.28 mmol/g, which is approximately 95 % of the original adsorption capacity. The estimated CO2/N2 selectivity of HPNC materials is 17, revealing great promise for practical CO2 adsorption and separation applications. The efficient CO2 uptake and enhanced CO2/N2 selectivity are due to the combination of nitrogen-doped and hierarchical porous structures of HPNC materials.  相似文献   

2.
Amine-modified SiO2 aerogel was prepared using 3-(aminopropyl)triethoxysilane (APTES) as the modification agent and rice husk ash as silicon source, its CO2 adsorption performance was investigated. The amine-modified SiO2 aerogel remains porous, the specific surface area is 654.24 m2/g, the pore volume is 2.72 cm3/g and the pore diameter is 12.38 nm. The amine-modified aerogel, whose N content is up to 3.02 mmol/g, can stay stable below the temperature of 300 °C. In the static adsorption experiment, amine-modified SiO2 aerogel (AMSA) showed the highest CO2 adsorption capacity of 52.40 cm3/g. A simulation was promoted to distinguish the adsorption between the physical process and chemical process. It is observed that the chemical adsorption mainly occurs at the beginning, while the physical adsorption affects the entire adsorption process. Meanwhile, AMSA also exhibits excellent CO2 adsorption–desorption performance. The CO2 adsorption capacity dropped less than 10 % after ten times of adsorption–desorption cycles. As a result, AMSA with rice husk ash as raw material is a promising CO2 sorbent with high adsorption capacity and stable recycle performance and will have a broad application prospect for exhaust emission in higher temperature.  相似文献   

3.
《分离科学与技术》2012,47(8):1227-1234
The synthesis of horn-shaped carbon nanotubes using carbon tetrachloride as carbon source was carried out by solvothermal method at 200°C for 2 h. The scanning and transmission electron microscopic characterization of the obtained product showed the formation of horn-shaped carbon nanotubes with irregular wall structure having inner diameter of ~105 nm and length of ~1 µm. The equilibrium gas adsorption properties of horn-shaped carbon nanotubes derived from carbon tetrachloride were successfully investigated for CO2, CH4, and N2 at 288, 303, and 318 K. Horn-shaped carbon nanotubes possess better CO2 adsorption capacity (2.53 mmol/g) with high capacity selectivity (14.7) and equilibrium selectivity (59.1) over N2 at 288 K. The detailed adsorption study with estimation of physical parameters such as Henry's constant and heat of adsorption identifies the horn-shaped carbon nanotubes as a potential adsorbent material in the field of CO2 storage and separation.  相似文献   

4.
Nanoporous S-doped carbon and its composites with graphite oxide were tested as adsorbents of CO2 (1 MPa at 0 °C) after degassing either at 120 °C or 350 °C. The adsorption capacities were over 4 mmol/g at ambient pressure and 8 mmol/g at 0.9 MPa in spite of a low volume of micropores. The nitrogen adsorption experiments showed an increase in porosity upon an increase in the degassing temperature. The extent of this effect depends on the stability of surface groups. Interestingly, the CO2 adsorption, especially at low pressure, was not affected. The good performance is due to the presence of ultramicropores similar in sizes to CO2 molecule and to sulfur in various functionalities. Sulfur incorporated to aromatic rings enhances CO2 adsorption via acid–base interactions in micropores. Moreover, sulfonic acids, sulfoxides and sulfones attract CO2 via polar interactions. Hydrogen bonding of CO2 with acidic groups on the surface can also play an important role in the CO2 retention. These carbons have high potential for application as CO2 removal media owing to their high degree of pore space utilization. The results obtained also show that high degassing temperatures might result in the decomposition of surface groups and thus in changes in surface interactions.  相似文献   

5.
Novel low-temperature swing adsorbents that preferably adsorb CO2 were synthesized by varying loading of heteropolyacid Fe1.5PMo12O40 (Fe–PMA) supporting on mesoporous cellular foams (MCFs) by wetting impregnation. The synthesized materials were characterized by various physicochemical, thermal and spectral techniques and the CO2 adsorption capacity of the materials were evaluated. Solid adsorbents showed a significantly high adsorption capacity toward CO2 due to the chemisorptions of CO2. The CO2 adsorption capacities of the materials decreased as the temperature increased. The results showed that the adsorption capacity reached a level of 81.8 mg CO2/g-adsorbent at 25 °C for the 20 wt% Fe–PMA–MCFs. These results indicated that the iron (Fe2+) complexes acted as efficient catalysts for the separation of CO2. The as-synthesized adsorbents were selective, thermally stable, long-lived, and could be recycled at a temperature of 110 °C.  相似文献   

6.
We performed molecular dynamics simulation to elucidate the adsorption behavior of hydrogen (H2), carbon dioxide (CO2), and methane (CH4) on four sub-models of type II kerogens (organic matter) of varying thermal maturities over a wide range of pressures (2.75 to 20 MPa) and temperatures (323 to 423 K). The adsorption capacity was directly correlated with pressure but indirectly correlated with temperature, regardless of the kerogen or gas type. The maximum adsorption capacity was 10.6 mmol/g for the CO2, 7.5 mmol/g for CH4, and 3.7 mmol/g for the H2 in overmature kerogen at 20 MPa and 323 K. In all kerogens, adsorption followed the trend CO2 > CH4 > H2 attributed to the larger molecular size of CO2, which increased its affinity toward the kerogen. In addition, the adsorption capacity was directly associated with maturity and carbon content. This behavior can be attributed to a specific functional group, i.e., H, O, N, or S, and an increase in the effective pore volume, as both are correlated with organic matter maturity, which is directly proportional to the adsorption capacity. With the increase in carbon content from 40% to 80%, the adsorption capacity increased from 2.4 to 3.0 mmol/g for H2, 7.7 to 9.5 mmol/g for CO2, and 4.7 to 6.3 mmol/g for CH4 at 15 MPa and 323 K. With the increase in micropores, the porosity increased, and thus II-D offered the maximum adsorption capacity and the minimum II-A kerogen. For example, at a fixed pressure (20 MPa) and temperature (373 K), the CO2 adsorption capacity for type II-A kerogen was 7.3 mmol/g, while type II-D adsorbed 8.9 mmol/g at the same conditions. Kerogen porosity and the respective adsorption capacities of all gases followed the order II-D > II-C > II-B > II-A, suggesting a direct correlation between the adsorption capacity and kerogen porosity. These findings thus serve as a preliminary dataset on the gas adsorption affinity of the organic-rich shale reservoirs and have potential implications for CO2 and H2 storage in organic-rich formations.  相似文献   

7.
CO2 capturing technologies have attracted significant attention in order to limit emissions and reduce their negative effect on the environment. Mesoporous silica materials (MCM-41) are easily recyclable, affordable, and thermally and mechanically stable, providing added benefits in CO2 capture. However, further studies are necessary to characterize the effects of MCM-41 pore size, adsorption temperature and surface silylation on CO2 adsorption efficiency. In this work, mesoporous silica is synthesized using alkyltrimethylammonium bromide with different chain lengths (CnH2n + 1 N(CH3)3Br, n = 14, 16 and 18) as structure-directing agents, and the adsorption capacity of CO2 on TTMCM-41 (C17H38NBr), CTMCM-41 (C19H42NBr), DTMCM-41(C21H46NBr) samples was measured gravimetrically at room temperature and pressure up to 40 bar. The silica structures were characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy (TEM). The XRD, N2 adsorption–desorption and TEM measurements indicated the presence of a well-ordered hexagonal array with uniform mesostructures. The mesoporous silica obtained, denoted as TTMCM-41, CTMCM-41 and DTMCM-41, had distinct physical properties, such as BET surface area, hexagonal unit cell, pore volume, pore diameter and pore wall thickness. CTMCM-41 exhibited an adsorption capacity (0.58 g CO2/g adsorbent) of more than DTMCM-41 (0.48 g CO2/g adsorbent) and TTMCM-41 (0.42 g CO2/g adsorbent). The results suggest that CTMCM-41 can be a better mesoporous adsorbent for CO2 adsorption .  相似文献   

8.
The dynamic adsorption behavior of CO2 under both nonisothermal and nearly isothermal conditions in silica supported poly(ethylenimine) (PEI) hollow fiber sorbents (Torlon®‐S‐PEI) is investigated in a rapid temperature swing adsorption (RTSA) process. A maximum CO2 breakthrough capacity of 1.33 mmol/g‐fiber (2.66 mmol/g‐silica) is observed when the fibers are actively cooled by flowing cooling water in the fiber bores. Under dry CO2 adsorption conditions, heat released from the CO2‐amine interaction increases the CO2 breakthrough capacity by reducing the severity of the diffusion resistance in the supported PEI. This internal resistance can also be alleviated by prehydrating the fiber sorbent with a humid N2 feed. The CO2 breakthrough capacity of prehydrated fibers is adversely affected by the release of the adsorption enthalpy (unlike the dry fibers); however, active cooling of the fiber results in a constant CO2 breakthrough capacity even at high CO2 delivery rates (i.e., high adsorption enthalpy delivery rates). In full RTSA cycles, a purity of 50% CO2 is achieved and the adsorption enthalpy recovery rate can reach ~72%. Studies on the cyclic stability of uncooled fiber sorbents in the presence of SO2 and NO contaminants indicate that exposure to NO at 200 ppm over 120 cycles does not lead to a significant degradation of the sorbents, but SO2 exposure at a similar high concentration of 200 ppm causes 60% loss in CO2 breakthrough capacity after 120 cycles. A simple amine reinfusion technique is successfully demonstrated to recover the adsorption capacity in poisoned fiber sorbents after deactivation by exposure to impurities such SO2. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3878–3887, 2014  相似文献   

9.
CO2 capture from humid flue gas is always costly due to the irreplaceable pretreatment of dehydration in current processes, which creates an urgent demand for moisture-insensitive adsorbents with considerable CO2 uptakes as well as remarkable H2O tolerances. In the present work, the microporous titanium silicate molecular sieve ETS-10 was synthesized with coal fly ash as the only silica source. The as-synthesized ETS-10 was characterized by X-ray diffraction, scanning electronic microscopy and infrared spectroscopy to verify its crystal morphology, in which neither impurity nor aggregation was observed. The following CO2 adsorption experiments on the thermal gravimetric analyzer demonstrated its similar CO2 adsorption capacity yet dramatical adsorption kinetics among some other microporous materials, e.g., potassium chabazite. These specific properties consequently guaranteed its favorable CO2 adsorption capacity even at high temperatures (1.35 mmol/g at 393 K) and shortened the breakthrough time of single CO2 flow to less than 20 s. In CO2/H2O binary breakthrough experiments, the as-obtained ETS-10 still maintained excellent CO2 uptake of 0.81 mmol/g at 323 K, regardless of the presence of water vapor, making it a promising substitute for direct CO2 separation from humid flue gases at practical conditions of post-combustion adsorption.  相似文献   

10.
《分离科学与技术》2012,47(1):149-165
Abstract

Uptake of nickel and benzene from dilute single‐solute solutions, mimicking wastewater with low concentrations of heavy metals or volatile organic compounds, was examined using activated carbons with similar good surface properties (BET surface area of ≈1100 m2/g). They were developed through H3PO4 acid activation of giant reed (Arundo donax L.) under flowing air or N2. The carbons obtained in air proved more effective to capture Ni(II) ions under pre‐established equilibrium conditions. Inversely, the N2‐derived carbons exhibited a better ability for benzene adsorption. The behavior was related to the smaller total content of acidic/polar surface oxygen functionalities of the carbons developed under N2 (1.9 meq/g), compared to that of the air‐derived ones (3.3 meq/g). Two‐, three‐parameter models described properly the isotherms, predicting similar maximum adsorption capacities (Xm ) for the investigated systems. The Xm parameter in the Langmuir's model was 0.44 mmol/g for the adsorption of Ni(II) ions on the air‐derived carbons, and 0.45 mmol/g for benzene adsorption on those obtained in N2. Present results highlight the relevance of the surface chemistry developed upon activation to optimize the performance of activated carbons for wastewater treatment according to the pollutants' nature.  相似文献   

11.
Tetraethylenepentamine (TEPA) was employed to functionalize the large-pore mesoporous silica (denoted MSU-J) with 3D worm-hole framework structures which was prepared through a supramolecular hydrogen-bonding assembly pathway from low-cost H2NCH(CH3)CH2[OCH2CH(CH3)]33NH2 (D2000) as structure-directing porogens and tetraethylorthosilioate as the silica source for capturing CO2. The resultant adsorbents were characterized by FT-IR, Transmission electron microscopy (TEM), N2 adsorption/desorption and thermogravimetric analysis. Textural properties, elemental analysis and TEM measurement of the samples showed a severe pore filling of MSU-J as TEPA loading was increased to 70 wt%. CO2 adsorption isotherms measured at different temperatures revealed the optimal adsorption temperature is 25 °C. The adsorption capacity of MSU-J with different TEPA loading contents was calculated. As a result, 50 wt% of TEPA supported on as-synthesized MSU-J achieved the highest capacity with the value of 164.3 mg/g under the conditions of 99.99 % CO2 at 25 °C and 0.1 MPa. Repeated adsorption/desorption cycles revealed that amine-impregnated materials was very efficient for less apparent decrease in CO2 adsorption capacity even after 6 adsorption–regeneration cycles.  相似文献   

12.
An amine functional MIL-53(Al) material was prepared through a clean, rapid, energy-efficient method of microwave and ultrasound irradiation. The pure phase NH2-MIL-53(Al) can be formed in 25 min, utilizing the synergistic effect of microwave and ultrasound irradiation. The dramatic acceleration in reaction rates suggested that the removal of a passivation coating on the substrate particles and the resultant enhancement in mass and heat transfer. The porous MOFs exhibited a high thermal and chemical stability, decomposing at temperatures above 410 °C in air. The NH2-MIL-53(Al) performed an excellent adsorption for CO2. The CO2 capacities up to 33.86 cm3 g?1 at 298 K at low pressures, which suggests chemisorption between CO2 and pendan amine groups. Measurement of CO2 adsorption cycles proved that the functionalized materials show good regenerability and stability.  相似文献   

13.
N‐doped porous carbons (NPCs) are highly promising for CO2 capture, but their preparation is severely hindered by two factors, namely, the high cost of N‐containing polymer precursors and the low yield of carbon products. Here we report for the first time the fabrication of NPCs through the rational choice of the polymer NUT‐4, with low cost and high phenyl density, as precursor. For the material NPC‐600 obtained from carbonization at 600°C, the yield is as high as 52.1%. The adsorption capacity of CO2 on NPC‐600 reaches 6.9 mmol/g at 273 K and 1 bar, which is obviously higher than that on the benchmarks, including 13X zeolite (4.1 mmol/g) and activated carbon (2.8 mmol/g), as well as most reported carbon materials. Our results also demonstrate that the present NPCs can be completely regenerated under mild conditions. The abundant microporosity and “CO2‐philic” (N‐doped) sites are responsible for the adsorption performance. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1648–1658, 2017  相似文献   

14.
An adsorbent for CO2 capture was prepared by the grafting of acrylonitrile (AN) onto viscose fibers (VFs); this was followed by amination with triethylene tetramine (TETA). The effects of the reaction conditions, such as the concentrations of the monomer, initiator, and nitric acid, on the grafting degree and grafting efficiency were studied. The adsorption performance of the adsorbent for CO2 was evaluated by fixed‐bed adsorption. The highest dynamic adsorption capacity of the adsorbent for CO2 was 4.35 mmol/g when the amine content of the adsorbent VF–AN–TETA reached 13.21 mmol/g. Compared with the polypropylene (PP)‐fiber‐based adsorbent (PP–AN–TETA), VF–AN–TETA with hydroxyl groups on the fibers facilitated the diffusion of CO2 and water and led to a higher CO2 adsorption capacity than that of PP–AN–TETA. The VF–AN–TETA adsorbent also showed good regeneration performance: its CO2 adsorption capacity could still retain almost the same capacity as the fresh adsorbent after 10 adsorption–desorption cycles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42840.  相似文献   

15.
Sustainable biomass-derived carbon materials were produced by hydrothermal carbonization of corn stover that was followed by chemical activation with KOH. The prepared carbon materials were used for CO2 adsorption and had a CO2 uptake of 7.14?mmol/g at a pressure of 1?bar and at 0°C that was much higher than CO2 uptake by activated carbon that was prepared from direct activation of corn stover (2.78?mmol/g). The porous corn stover-derived carbonaceous material had high surface area (2442?m2/g) and large pore volume (1.55?cm3/g). Product yields obtained by the activation of hydrothermally carbonized corn stover were significantly higher than those obtained by the direct activation of corn stover (36–75?vs. 8%). The prepared corn stover-derived porous carbon had a high CO2/N2 selectivity of 15.5 and exhibited constant CO2 uptake for five successive reuse cycles. The hydrothermal carbonization step plays an important role for producing porous carbons from biomass that have high and specific adsorption properties.  相似文献   

16.
A novel mesoporous carbon (AMC850) with worm-like mesoporosity, very large BET surface area (2935 m2/g), and ultrahigh pore volume of 3.41 cm3/g was facilely synthesized from etching of the pristine mesoporous carbon (MC850) with sodium amide (NaNH2). The mesoporosity in the synthesized AMC850 was significantly expanded in comparison with pristine mesoporous carbon. The synthesized AMC850acts as an efficient support, could accommodate much more pentaethylenehexamine (PEHA) in comparison with the pristine MC850, giving PEHA@AMC850 composites. The resultant PEHA@AMC850 showed much improved property for the selective capture of CO2 in comparison with AMC850 (2.02 mmol/g vs. 0.73 mmol/g, at 75 °C). Thus, the PEHA@AMC850 composites showed promising application in the selective capture of CO2 from flue gas.  相似文献   

17.
The aim of this study was to verify the ability of nickel-impregnated palm shell activated carbon (PSAC) for CO2 adsorption and compare its performance with the chemically and physically activated PSAC. Sodium hydroxide and CO2 were used as activating agents for chemical and physical activation, respectively. Nickel nitrate hexahydrate (Ni(NO3)2·6H2O) was used as a precursor for metal impregnation. The effect of different chemical loadings (NaOH: 20–50 wt%), metal impregnation (Ni(NO3)2·6H2O: 16–28 wt%), and heat treatment time (1–4 h) was studied as parameters. Adsorption capacity was calculated using breakthrough graphs. The effect of humidity on CO2 adsorption and desorption of CO2 was also investigated in this study. The results revealed that chemically modified PSAC yields the highest adsorption capacity (48.2 mg/g) compared to other methods of activation. Interestingly, it was found that the adsorption capacity of nickel-impregnated PSAC was similar to other types of metal-impregnated activated carbon. Humidity gave a negative effect on CO2 adsorption. In summary, results showed that chemical activation is an efficient technique to modify PSAC for CO2 adsorption.  相似文献   

18.
We report on the gas storage behaviour and electrochemical charge storage properties of high surface area activated nanoporous carbon obtained from rice husk through low temperature chemical activation approach. Rice husk derived porous carbon (RHDPC) exhibits varying porous characteristics upon activation at different temperatures and we observed high gas uptake and efficient energy storage properties for nanoporous carbon materials activated even at a moderate activation temperature of 500 °C. Various experimental techniques including Fourier transform-infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy and pore size analyser are employed to characterise the samples. Detailed studies on gas adsorption behaviour of CO2, H2 and CH4 on RHDPCs have been performed at different temperatures using a volumetric gas analyser. High adsorption capacities of ~9.4 mmol g?1 (298 K, 20 bar), 1.8 wt% (77 K, 10 bar) and ~5 mmol g?1 (298 K, 40 bar) were obtained respectively for CO2, H2 and CH4, superior to many other carbon based physical adsorbents reported so far. In addition, these nanoporous carbon materials exhibit good electrochemical performance as supercapacitor electrodes and a maximum specific capacitance of 112 F g?1 has been obtained using aqueous 1 M Na2SO4 as electrolyte. Our studies thus demonstrate that nanoporous carbon with high porosity and surface area, obtained through an efficient approach, can act as effective materials for gas storage and electrochemical energy storage applications.  相似文献   

19.
Fe2O3–TiO2 porous ceramic (Fe/TiPC) beads with photo-catalytic performances and high adsorption capacities were prepared by a simple high temperature solid reaction and were applied for arsenic removal from drinking water. The microstructure and morphology of Fe/TiPC were characterized by X-ray diffraction and scanning electron microscopy. More than 90% removal ratio for As (III) and As (V) were respectively achieved by Fe/TiPC within 2 h under UV irradiation. The Langmuir capacity values of Fe/TiPC for As (III) and As (V) were 13.86 and 15.73 mg/g, respectively. In addition, Fe/TiPC could be reused for up to five times without significant reduction in the photocatalytic sensitivity and adsorption capacity aspects. Good catalytic oxidation performances and high adsorption capacities as well as a sample preparation for Fe/TiPC suggest that the composites may have practical prospects for the As (III) and As (V) removal from contaminated water.  相似文献   

20.
Different alkali and alkaline earth cation forms of bentonite clay were exchanged with protonated mono-, di- and triethanolamine compounds, to study the effect of the exchanged ammonium cations on the structure characteristics, thermal behavior, surface properties and CO2 adsorption capacities of bentonite clay. The revolution of the interlayer structure characteristics, thermal properties, the specific surface area and elemental analysis were characterized by XRD, FTIR, TGA, BET and CHNS techniques respectively, while the CO2 adsorption capacities were gravimetrically measured by using magnetic suspension balance (MSB) equipment. It was found that the intercalation of ammonium cations into the interlayer space of bentonite clay induced a step change in its basal spacing, depending on their molar mass and the interlayer molecular arrangement. The presence of the characteristic IR peaks of amine compounds in the spectra of bentonite clay adsorbents modified by amines was qualitatively supported by the incorporation of ammonium cations in the interlayer space of bentonite, while the presence of C, H and N elements using CHNS technique was quantitatively confirmed by the intercalation process of amine compounds. It was also found that the molar mass of amines has an inverse effect on the amount of the adsorbed water (intensity), its desorption temperature (position) and the specific surface area of the synthesized materials. The CO2 adsorption capacities on all the studied bentonite clay adsorbents modified by amines were found to increase between 2.68 and 3.15 mmol/g, compared to 0.93 mmol/g for untreated bentonite at the studied temperature and pressure. As expected, bentonite clay modified with di- and triethanolammonium cations showed lower CO2 adsorption capacities than that treated with monoethanolammonium cations, due to their low specific surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号