首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
压力/差压变送器被广泛应用于研究堆的参数测量,若应用不当将会影响到工艺系统安全和人员设备安全,此外若测量信号不可靠或设备故障失效将会给研究堆带来严重的安全事故和经济损失。本文就压力/差压变送器在研究堆应用中应考虑的因素和对策展开研究,建议设计一次仪表间和一套压力/差压变送器反冲水系统并应用仪表校验免拆卸方法,以实现压力/差压变送器的可靠测量和高效维护,使设备的运行和维护满足研究堆安全运行和有效利用的要求。   相似文献   

2.
The minimum steam cooling pressure (MSCP) is an important parameter for safe operation of boiling water reactor (BWR)-type nuclear power plant for the anticipated transient without scram (ATWS) scenario with reactor pressure vessel (RPV) water level unknown. Under such situation, the operator is requested to open the safety/relief valves (SRVs) and control the RPV pressure slightly above the MSCP so that adequate core cooling can be maintained. It is derived based on steam cooling strategy.The MSCP, defined to be the lowest RPV pressure at which the covered portion of the core, is capable of generating sufficient steam to preclude peak cladding temperature (PCT) in the uncovered portion of the core from exceeding 1088 K (1500 °F). It is calculated by two parameters - (1) the minimum bundle steam flow (Wg-1500) to maintain PCT < 1088 K (1500 °F) and (2) the number of SRVs available for opening.For current emergency operating procedure (EOP), only one set of MSCP derived based on one value of Wg-1500 for the ATWS condition. Furthermore, it is derived based on decay power of 2.2% rated power. Thus, the current MSCP used for the ATWS accident scenarios was deemed inadequate. The purpose of this paper (work) is to study the MSCP used in the ATWS conditions. For case of ATWS of 13% full power, controlling RPV pressure at MSCP of current approach ends up with core melt. The Wg-1500 is suggested to be replaced by the steam generation rate at minimum steam cooling RPV water level (MSCRWL), which is a function of power level. Simulation result indicates controlling RPV pressure at MSCP is equivalent to controlling the RPV water level at MSCRWL. The revised MSCP is dependent on the ATWS power level.  相似文献   

3.
介绍了中国先进研究堆(CARR)水池窄量程液位测量的4种方案:远传隔离法兰差压法、安全级吹气法、绝压变送器测量法、差压变送器测量法,并对这4种测量方案进行比较、分析,最后对选定的测量方案进行了误差分析。结果表明:差压变送器测量法满足测量要求。  相似文献   

4.
《Annals of Nuclear Energy》2006,33(14-15):1245-1259
This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR.  相似文献   

5.
It is known that under-borated coolant can accumulate in the loops and that it can be transported towards the reactor core during a loss-of-coolant-accident. Therefore, the mixing of weakly borated water inside the reactor pressure vessel was investigated using the ROCOM test facility. Wire-mesh sensors based on electrical conductivity measurement are used to measure in detail the spreading of a tracer solution in the facility. The mixing in the downcomer was observed with a measuring grid of 64 azimuthal and 32 vertical positions. The resulting distribution of the boron concentration at the core inlet was measured with a sensor integrated into the lower core support plate providing one measurement position at the entry into each fuel assembly.

The boundary conditions for this mixing experiment are taken from an experiment at the thermal hydraulic test facility PKL operated by AREVA Germany. The slugs, which have a lower density, accumulate in the upper part of the downcomer after entering the vessel. The ECC water injected into the reactor pressure vessel falls almost straight down through this weakly borated water layer and accelerates as it drops over the height of the downcomer. On the outer sides of the ECC streak, lower borated coolant admixes and flows together with the ECC water downwards. This has been found to be the only mechanism of transporting the lower borated water into the lower plenum. In the core inlet plane, a reduced boron concentration is detected only in the outer reaches of the core inlet. The minimum instantaneous boron concentration that was measured at a single fuel element inlet was found to be 66.3% of the initial 2500 ppm.  相似文献   


6.
The paper describes analyses performed with the Reactor Excursion and Leak Analysis Package 5 (RELAP5) computer code to investigate pressurized thermal shock transients for the H.B. Robinson pressurized water reactor. The computer models and their application to 180 transients are described. Reactor vessel downcomer temperature and pressure histories for five transient groups are presented.  相似文献   

7.
The Purdue NMR (Novel Modular Reactor) represents a BWR-type small modular reactor with a significantly reduced reactor pressure vessel (RPV). Specifically, the NMR is one third the height and area of a conventional BWR RPV with an electrical output of 50 MWe. Experiments are performed in a well-scaled test facility to investigate the thermal hydraulic flow instabilities during the startup transients for the NMR. The scaling analysis for the design of natural circulation test facility uses a three-level scaling methodology. Scaling criteria are derived from non-dimensional field and constitutive equations. Important thermal hydraulic parameters, e.g. system pressure, inlet coolant flow velocity and local void fraction, are analyzed for slow and fast normal startup transients. Flashing instability and density wave oscillation are the main flow instabilities observed when system pressure is below 0.5 MPa. And the flashing instability and density wave oscillation show different type of oscillations in void fraction profile. Finally, the pressurized startup procedure is recommended and tested in current research to effectively eliminate the flow instabilities during the NMR startup transients.  相似文献   

8.
为了研究压水堆因“直接安注”冷水注入压力容器下降环腔而导致的承压热冲击(PTS)热工水力问题,基于1:10比例模型,应用计算流体力学软件FLUENT5.4进行了紊流流动换热的数值模拟分析,同时进行了常压瞬态传热实验研究。针对下降环腔折算流速0.5 m/s,安注流速10m/s的典型工况,研究了安注水开启后下降环腔内的瞬态流动换热特性,数值模拟与实验结果吻合良好。考察了压力容器安注接管出口区环形焊缝区及堆芯段筒体中子强辐照区所承受的热冲击状况,基于稳态流动研究了下降环腔内流体混合特性及流动机理,为热冲击分析提供参考。  相似文献   

9.
An experiment was conducted at the ROSA-IV/Large Scale Test Facility (LSTF) on the performance of a gravity-driven emergency core coolant (ECC) injection system attached to a pressurized water reactor (PWR). Such a gravity-driven injection system, though not used in the current-generation PWRs, is proposed for future reactor designs. The experiment was performed to identify key phenomena peculiar to the operation of a gravity injection system and to provide data base for code assessment against such phenomena. The simulated injection system consisted of a tank which was initially filled with cold water of the same pressure as the primary system. The tank was connected at its top and bottom, respectively, to the cold leg and the vessel downcomer. The injection into the downcomer was driven primarily by the static head difference between the cold water in the tank and the hot water in the pressure balance line (PBL) connecting the cold leg to the tank top. The injection flow was oscillatory after the flow through the PBL became two-phase flow. The experiment was post-test analyzed using a JAERI modified version of the RELAP5/MOD2 code. The code calculation simulated reasonably well the system responses observed in the experiment, and suggested that the oscillations in the injection flow was caused by oscillatory liquid holdup in the PBL connecting the cold leg to tank top.  相似文献   

10.
In order to examine high burnup fuel performance under power oscillation conditions, two tests of irradiated fuels under simulated power oscillation conditions were conducted in the Nuclear Safety Research Reactor (NSRR). Irradiated fuels at burnups of 56 and 25 GWd/tU were subjected to four to seven power oscillations, which peaked at 50 to 95 kW/m with intervals of 2 s. The power oscillations were caused by quick withdrawal and insertion of six regulating rods of the NSRR with a computerized control. Impacts of cyclic loads on the fuel performance under hypothetical unstable power oscillations arising during an anticipated transient without scram (ATWS) in boiling water reactors (BWRs) were examined in the tests. Deformation of the fuel cladding of the test rods was comparable to those observed in shorter transient tests, which simulated reactivity-initiated accidents (RIAs), at the same fuel enthalpy level up to 368 J/g. The fuel deformation was mainly caused by pellet-cladding mechanical interaction (PCMI) and was roughly proportional to the fuel enthalpy. Enhanced cladding deformation due to ratcheting by the cyclic load was not observed. Fission gas release, on the other hand, was considerably smaller than in the RIA tests, suggesting different release mechanisms in the two types of transients.  相似文献   

11.
Some nuclear power plants have recently experienced hydrodynamic instability in steam generators (SGs). Instability, if present in the SG of a pressurized water reactor, results in the periodic oscillation of the water level, steam flow, feedwater flow, and the flow through the circulation loop. In this instability analysis, the major parameters are the power level and flow area of the tube support plate (TSP). The threshold power above which instability may occur is generated by variations in TSP flow area. The current method of estimating the blockage rate is the visual inspection of the SG interior. This type of visual inspection, however, requires many resources. To improve this method, we focus on measurements of the SG level. The measurements of the level change because the SG downcomer flow rate varies due to the blockage of the TSP flow area. To quantify this effect, we calculate the circulation ratio in relation to changes in TSP flow area. In addition, we evaluate the pressure drops that affect the SG water level. Sensor drift analyses of the level measurements are performed to confirm that the level variance is derived from system characteristics rather than sensor drift. Finally, the blockage rates of the TSP flow area are generated by using measurements of the SG water level.  相似文献   

12.
为了研究压水堆因安注冷水直接注入反应堆压力容器下降环腔而导致的承压热冲击(PTS)热工水力问题,基于1∶10比例模型,应用计算流体力学商用软件FLUENT5.4进行了紊流流动换热的数值模拟分析,同时进行了常压传热实验研究。针对下降环腔折算流速0.5m/s,安注流速10m/s的典型工况,研究了压力容器下降环腔的壁面换热特性。通过分析下降环腔内的流动及混合特性,从流动机理上解释了压力容器内壁上准重接触点附近换热强烈的现象,并指出壁面换热强弱与近壁流体紊流脉动动能密切相关,为热冲击分析提供参考。  相似文献   

13.
利用RELAP5程序建立压力容器外部冷却(ERVC)系统模型,在水淹平衡条件下分析不同的安全壳内压力、冷却水过冷度、加热功率和水淹水位对系统两相自然流动能力的影响,找到各工况下的临界过冷度和不稳定性边界。结果表明:AP1000的ERVC系统设计具有很大裕量,仅依靠自然循环就可通过下封头对熔池进行有效冷却;安全壳内压力越高、冷却水过冷度越低、加热功率越大、水淹水位越高,两相自然循环流量越高。但当加热功率水平较低时,压力对临界过冷度影响不大;冷却水过冷度低于临界值时,会发生剧烈的倒流和流量震荡现象;当水淹水位低于5.5 m时,不能建立稳定的两相自然循环流动。  相似文献   

14.
The phenomenon of fluid/thermal mixing in the cold leg and downcomer of a Pressurized Water Reactor (PWR) has been a critical issue related to the concern of pressurized thermal shock. The question of imperfect mixing arises when the possibility of cold emergency core cooling water contacting the vessel wall during an overcooling transient could produce thermal stresses large enough to initiate a flaw in a radiation embrittled vessel wall. The temperature of the fluid in contact with the vessel wall is crucial to a determination of vessel integrity since temperature affects both the stresses and the material toughness of the vessel material. A simple mixing model is described which was developed as part of the EPRI pressurized thermal shock program for evaluation of reactor vessel integrity.  相似文献   

15.
于宏  张明葵 《原子能科学技术》2016,50(10):1805-1816
未能紧急停堆的预期瞬态(ATWS)缓解系统是保证中国先进研究堆(CARR)安全的重要系统之一。当发生预期运行瞬态,反应堆未能紧急停堆时,通过ATWS缓解系统动作实现停堆,从而保护反应堆安全。ATWS缓解系统的高可靠性是保证其完成预期功能的重要条件,因此对该系统的可靠性给予了高度重视。本文以ATWS缓解系统为研究对象,利用故障模式及影响分析和故障树等可靠性分析方法,建立相应模型,对ATWS缓解系统进行了定性和定量的分析,得到了ATWS缓解系统发生故障的概率和最小割集,找出了薄弱环节,提出了改进措施和建议,其可靠性水平已达到CARR工程的设计要求,验证了设计,为CARR其他系统分析和验证奠定了基础。  相似文献   

16.
The object of this work is to investigate fluid mixing phenomena as they related to pressurized thermal shock (PTS) in a pressurized water reactor vessel downcomer during transient cooldown with direct vessel injection (DVI), using test models. The test model designs were based on ABB Combustion Engineering (CE) System 80+ reactor geometry. A cold-leg, small-break loss-of-coolant accident (LOCA) and a main steam line break were selected as the potential PTS events for the ABB-CE System 80+. This work consists of two parts. The first part provides the visualization tests of the fluid mixing between DVI fluids and existing coolant in the downcomer region, and the second part presents the results of thermal mixing tests with DVI in the other test model. Flow visualization tests with DVI have clarified the physical interaction between DVI fluid and primary coolant during transient cooldown. A significant temperature drop was observed in the downcomer during the tests of a small-break LOCA. The measured transient temperature profiles compare well with the predictions from the REMIX code for a small-break LOCA, and with the calculations from the COMMIX-1B code for a stream line break event.  相似文献   

17.
A three-dimensional CFD analysis has been performed on the flow characteristics in the reactor vessel downcomer during the late reflood phase of a postulated large-break loss-of-coolant accident (LBLOCA), in order to validate the modified linear scaling methodology that was applied in the MIDAS test facility of Korea Atomic Energy Research Institute. The vertical and circumferential velocity similarities are numerically tested for the 1/1 and 1/5 linear scale models for the APR1400 reactor vessel downcomer. The effects of scale on flow patterns, pressure and velocity distributions, and the impinging jet behavior are analyzed with the FLUENT code. In addition, a simplified half cylinder model with a single emergency core cooling (ECC) nozzle is numerically tested to investigate the scale effect on the spreading width and break-up of ECC water film. The qualitative and quantitative results indicate that the 1/5 modified linear scale model of the reactor vessel downcomer would reasonably preserve the hydrodynamic similarity with APR1400.  相似文献   

18.
The APR1400 (Advanced Power Reactor 1,400 MWe) has adopted the direct vessel injection (DVI) in lieu of the conventional cold leg injection for its emergency core cooling system (ECCS). In this reactor, sweepout from the water surface by gas (vapor or air) flow plays an important role in analyzing the mass and momentum transfer in the reactor downcomer of multidimensional geometry during a loss-of-coolant accident (LOCA) by decreasing the water level in the downcomer. The core water level will tend to decrease rapidly if a considerable amount of the entrained water stream and droplets bypasses through the break. The amount of entrained water is mostly determined by the interacting gas flow rate, the geometric condition, and the interfacial area between the gas and the water. The sweepout is observed to take place in three rather distinct steps: the beginning of undulation, the full wave and the wave peak (droplet separation). In view of these observations we investigated the relation between the gas flow rate and the amount of bypass as a function of time. The current experimental results shed light on the flow mechanism and the semi-empirical relations for the three-dimensional sweepout in a large-diameter annulus such as the reactor downcomer. A physico-numerical model is being developed to predict the multidimensional bypass flow rate resulting from the sweepout and entrainment in the downcomer.  相似文献   

19.
对低压条件下自然循环回路内的两相间歇泉流动不稳定性进行了实验研究。同时,对RELAP5/MOD3.2程序计算低压自然循环间歇泉流动不稳定的可行性进行了验证分析。实验结果表明,低压条件下,间歇泉流动不稳定产生的根本原因在于有效驱动压头的周期性变化,与加热段内气液两相流动的形成-消失周期密切相关。下降段内流体温度越高,波动周期越短。实验数据与RELAP5/MOD3.2程序模拟计算结果符合较好,说明RELAP5/MOD3.2程序对模拟计算低压条件下自然循环间歇泉流动不定稳性具有较好的适用性。  相似文献   

20.
A very complex type of power instability occurring in boiling water reactor (BWR) consists of out-of-phase regional oscillations, in which normally subcritical neutronic modes are excited by thermal-hydraulic feedback mechanisms. The out-of-phase mode of oscillation is a very challenging type of instability and its study is relevant because of the safety implications related to the capability to promptly detect any such inadvertent occurrence by in-core neutron detectors, thus triggering the necessary countermeasures in terms of selected rod insertion or even reactor shutdown. In this work, simulations of out-of-phase instabilities in a BWR obtained by assuming an hypothetical continuous control rod bank withdrawal are being presented. The RELAP5/Mod3.3 thermal-hydraulic system code coupled with the PARCS/2.4 3D neutron kinetic code has been used to simulate the instability phenomenon. Data from a real BWR nuclear power plant (NPP) have been used as reference conditions and reactor parameters. Simulated neutronic power signals from local power range monitors (LPRM) have been used to detect and study the local power oscillations. The decay ratio (DR) and the natural frequency (NF) of the power oscillations (typical parameters used to evaluate the instabilities) have been used in the analysis. The results are discussed also making use of two-dimensional plots depicting relative core power distribution during the transient, in order to clearly illustrate the out-of-phase behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号