首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential evolution (DE) is an efficient population based algorithm used to solve real-valued optimization problems. It has the advantage of incorporating relatively simple and efficient mutation and crossover operators. However, the DE operator is based on floating-point representation only, and is difficult to use when solving combinatorial optimization problems. In this paper, a modified binary differential evolution (MBDE) based on a binary bit-string framework with a simple and new binary mutation mechanism is proposed. Two test functions are applied to verify the MBDE framework with the new binary mutation mechanism, and four structural topology optimization problems are used to study the performance of the proposed MBDE algorithm. The experimental studies show that the proposed MBDE algorithm is not only suitable for structural topology optimization, but also has high viability in terms of solving numerical optimization problems.  相似文献   

2.
Wang  Min  Wang  Jie-Sheng  Li  Xu-Dong  Zhang  Min  Hao  Wen-Kuo 《Applied Intelligence》2022,52(10):10999-11026

Harris Hawk Optimization (HHO) algorithm is a new population-based and nature-inspired optimization paradigm, which has strong global search ability, but its diversified local search strategies easily make it fall into local optimum. In order to enhance its search mechanism and speed of convergence, an new improved HHO algorithm based on the inverse cumulative function operator of Cauchy distribution and tangent flight operator was proposed. The proposed two operators are used as scale factors to control the step size. The walk path of Cauchy inverse cumulative integral function shows that its trajectory step length is relative to the average, which can further enhance the search stability of the algorithm. The Tangent flight has the function of balanced exploitation and exploration, and enhances the convergence ability of the algorithm. In order to verify the performance of the proposed algorithm, the 30 benchmark functions of the 2017 Institute of Electrical and Electronic Engineers (IEEE) Conference on Evolutionary Computation (CEC2017) and two practical engineering design problems are adopted to carry out the simulation experiments. On the other hand, the covariance matrix adaptation evolutionary strategies (CMA-ES), arithmetic optimization algorithm (AOA), butterfly optimization algorithm (BOA), bat algorithm (BA), whale optimization algorithm (WOA), sine cosine algorithm (SCA), and the proposed HHO algorithms were used for comparison experiments. Simulation results show that the proposed the Cauchy-distribution and Tangent-Flight Harris Hawk Optimization (CTHHO) Algorithm has strong optimization capability.

  相似文献   

3.

针对差分进化算法开发能力较差的问题, 提出一种具有快速收敛的新型差分进化算法. 首先, 利用最优高斯随机游走策略提高算法的开发能力; 然后, 采用基于个体优化性能的简化交叉变异策略实现种群的进化操作以加强其局部搜索能力; 最后, 通过个体筛选策略进一步提高算法的探索能力以避免陷入局部最优. 12 个标准测试函 数和两种带约束的工程优化问题的实验结果表明, 所提出的算法在收敛速度、算法可靠性及收敛精度方面均优于EPSDE、SaDE、JADE、BSA、CoBiDE、GSA和ABC等算法, 在加强算法探索能力的同时能够有效地提高算法的开发能力.

  相似文献   

4.

In machine learning, searching for the optimal feature subset from the original datasets is a very challenging and prominent task. The metaheuristic algorithms are used in finding out the relevant, important features, that enhance the classification accuracy and save the resource time. Most of the algorithms have shown excellent performance in solving feature selection problems. A recently developed metaheuristic algorithm, gaining-sharing knowledge-based optimization algorithm (GSK), is considered for finding out the optimal feature subset. GSK algorithm was proposed over continuous search space; therefore, a total of eight S-shaped and V-shaped transfer functions are employed to solve the problems into binary search space. Additionally, a population reduction scheme is also employed with the transfer functions to enhance the performance of proposed approaches. It explores the search space efficiently and deletes the worst solutions from the search space, due to the updation of population size in every iteration. The proposed approaches are tested over twenty-one benchmark datasets from UCI repository. The obtained results are compared with state-of-the-art metaheuristic algorithms including binary differential evolution algorithm, binary particle swarm optimization, binary bat algorithm, binary grey wolf optimizer, binary ant lion optimizer, binary dragonfly algorithm, binary salp swarm algorithm. Among eight transfer functions, V4 transfer function with population reduction on binary GSK algorithm outperforms other optimizers in terms of accuracy, fitness values and the minimal number of features. To investigate the results statistically, two non-parametric statistical tests are conducted that concludes the superiority of the proposed approach.

  相似文献   

5.
Abstract

Many meta-heuristic algorithms have been proposed to solve continuous optimization problems. Hence, researchers have applied various techniques to change these algorithms for discrete search spaces. Artificial bee colony (ABC) algorithm is one of the well-known algorithms for real search spaces. ABC has a good ability in exploration but it is weak in exploitation. Several binary versions of ABC have been proposed so far. Since the methods are based on the standard ABC, they have the disadvantage of ABC. In this article, a new binary ABC called binary multi-neighborhood ABC (BMNABC) has been introduced to enhance the exploration and exploitation abilities in the phases of ABC. BMNABC applies the near and far neighborhood information with a new probability function in the first and second phases. A more conscious search than the standard ABC is done in the third phase for those solutions which have been not improved in the previous phases. The performance of algorithm has been evaluated by low- and high-dimensional functions and the 0-1 multidimensional knapsack problems. The proposed method has been compared with state-of-the-art algorithms. The results showed that BMNABC had a better performance in terms of solution accuracy and convergence speed.  相似文献   

6.
提出一种处理高维背包问题(KP)的贪婪封装二进制差分进化算法(GPBDE),并设计了一种贪婪封装的修补策略处理不可行解.为了提高种群的多样性及算法的全局搜索能力,对适应度较低的个体执行对偶变换.数值实验选取4种KP对GPBDE的优化能力进行测试,并将所提出的算法与4种同类算法进行比较,结果表明,GPBDE具有较强的寻优和约束处理能力,且收敛速度较快.  相似文献   

7.
相对于其他优化算法来说,微分进化算法具有控制参数少、易于使用以及鲁棒性强等特点,但在搜索过程中存在着局部搜索能力弱的缺点。针对微分进化算法局部搜索能力弱的缺点,提出了一种基于局部变异的微分进化算法,该算法使个体具有良好快速收敛能力。使用典型优化函数对比较算法进行了测试,算法分析和仿真结果表明,改进以后的算法具有寻优能力...  相似文献   

8.
Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.  相似文献   

9.
一种求解类覆盖问题的混合算法   总被引:8,自引:0,他引:8  
提出一种扩展的类覆盖问题,并将它归纳为一个有约束的多目标优化问题模型,该问题的解决对构建强壮的分类识别系统具有重要的意义.因此,通过对二进制粒子群算法参数特性的深入分析,阐明二进制粒子群算法不仅具有良好的全局搜索特性,而且能够充分利用已有的先验知识.进而提出一种贪心算法与二进制粒子群优化算法相结合的混合算法求解扩展的类覆盖问题,该算法在获得更优解的同时,仍具有较快的运算速度.多种算法的比较结果表明了算法的有效性和可行性.  相似文献   

10.
Li  Wei  Wang  Gai-Ge 《Engineering with Computers》2021,38(2):1585-1613

With the increasing complexity of optimization problems in the real world, more and more intelligent algorithms are used to solve these problems. Elephant herding optimization (EHO), a recently proposed metaheuristic algorithm, is based on the nomadic habits of elephants on the grassland. The herd is divided into multiple clans, each individual drawing closer to the patriarchs (clan updating operator), and the adult males are separated during puberty (separating operator). Biogeography-based optimization (BBO) is inspired by the principles of biogeography, and finally achieves an equilibrium state by species migration and drifting between geographical regions. To solve the numerical optimization problems, this paper proposes an improved elephant herding optimization using dynamic topology and biogeography-based optimization based on learning, named biogeography-based learning elephant herding optimization (BLEHO). In BLEHO, we change the topological structure of the population by dynamically changing the number of clans of the elephants. For the updating of each individual, we use the update of the operator based on biogeography-based learning or the operator based on EHO. In the separating phase, we set the separation probability according to the number of clans, and adopt a new separation operator to carry out the separation operation. Finally, through elitism strategy, a certain number of individuals are preserved directly to the next generation without being processed, thus ensuring a better evolutionary process for the population. To verify the performance of BLEHO, we used the benchmarks provided by IEEE CEC 2014 for the test. The experimental results were compared with some classical algorithms (ABC, ACO, BBO, DE, EHO, GA, and PSO) and the most advanced algorithms (BBKH, BHCS, CCS, HHO, PPSO, SCA, and VNBA) and analyzed by Friedman rank test. Finally, we also applied BLEHO to the simple traveling salesman problem (TSP). The results show that BLEHO has better performance than other methods.

  相似文献   

11.
Duan  Yuxian  Liu  Changyun  Li  Song  Guo  Xiangke  Yang  Chunlin 《Applied Intelligence》2022,52(10):11606-11637

Clustering analysis is essential for obtaining valuable information from a predetermined dataset. However, traditional clustering methods suffer from falling into local optima and an overdependence on the quality of the initial solution. Given these defects, a novel clustering method called gradient-based elephant herding optimization for cluster analysis (GBEHO) is proposed. A well-defined set of heuristics is introduced to select the initial centroids instead of selecting random initial points. Specifically, the elephant optimization algorithm (EHO) is combined with the gradient-based algorithm GBO for assigning initial cluster centers across the search space. Second, to overcome the imbalance between the original EHO exploration and exploitation, the initialized population is improved by introducing Gaussian chaos mapping. In addition, two operators, i.e., random wandering and variation operators, are set to adjust the location update strategy of the agents. Nine datasets from synthetic and real-world datasets are adopted to evaluate the effectiveness of the proposed algorithm and the other metaheuristic algorithms. The results show that the proposed algorithm ranks first among the 10 algorithms. It is also extensively compared with state-of-the-art techniques, and four evaluation criteria of accuracy rate, specificity, detection rate, and F-measure are used. The obtained results clearly indicate the excellent performance of GBEHO, while the stability is also more prominent.

  相似文献   

12.

Teaching–learning-based optimization (TLBO) is one of the latest metaheuristic algorithms being used to solve global optimization problems over continuous search space. Researchers have proposed few variants of TLBO to improve the performance of the basic TLBO algorithm. This paper presents a new variant of TLBO called fuzzy adaptive teaching–learning-based optimization (FATLBO) for numerical global optimization. We propose three new modifications to the basic scheme of TLBO in order to improve its searching capability. These modifications consist, namely of a status monitor, fuzzy adaptive teaching–learning strategies, and a remedial operator. The performance of FATLBO is investigated on four experimental sets comprising complex benchmark functions in various dimensions and compared with well-known optimization methods. Based on the results, we conclude that FATLBO is able to deliver excellence and competitive performance for global optimization.

  相似文献   

13.
差分进化算法简单高效,然而在求解大规模优化问题时,其求解性能迅速降低。针对该问题,提出一种正交反向差分进化算法。首先,该算法利用正交交叉算子,加强了算法的局部搜索能力。其次,为防止过强的局部搜索使算法陷入早熟收敛,利用反向学习策略调节种群多样性,从而有效地平衡算法的全局和局部搜索能力。利用11个标准测试函数进行实验,并和差分进化算法的4种优秀改进版本进行比较,实验结果表明该算法求解精度高、收敛速率快,是一种求解大规模优化问题的有效算法。  相似文献   

14.
In this paper, an efficient sequential approximation optimization assisted particle swarm optimization algorithm is proposed for optimization of expensive problems. This algorithm makes a good balance between the search ability of particle swarm optimization and sequential approximation optimization. Specifically, the proposed algorithm uses the optima obtained by sequential approximation optimization in local regions to replace the personal historical best particles and then runs the basic particle swarm optimization procedures. Compared with particle swarm optimization, the proposed algorithm is more efficient because the optima provided by sequential approximation optimization can direct swarm particles to search in a more accurate way. In addition, a space partition strategy is proposed to constraint sequential approximation optimization in local regions. This strategy can enhance the swarm diversity and prevent the preconvergence of the proposed algorithm. In order to validate the proposed algorithm, a lot of numerical benchmark problems are tested. An overall comparison between the proposed algorithm and several other optimization algorithms has been made. Finally, the proposed algorithm is applied to an optimal design of bearings in an all-direction propeller. The results show that the proposed algorithm is efficient and promising for optimization of the expensive problems.  相似文献   

15.
孙一凡  张纪会 《控制与决策》2023,38(10):2764-2772
为了进一步提升粒子群算法在离散优化问题中的性能,针对粘性二进制粒子群算法缺乏全局搜索能力、容易陷入局部最优和收敛速度慢的缺点,提出一种新的自适应参数策略和粒子散度指标,并结合模拟退火机制改善该算法的寻优能力.为了检验算法性能,通过选取不同维数的背包问题算例库以及不同规模的UCI特征选择问题算例库进行仿真实验,并对实验数据进行统计分析.实验以及分析结果表明,所提算法在寻优精度、算法稳定性和收敛速度上均优于对比算法.  相似文献   

16.
为了克服狼群搜索算法(WSA)存在的不足,提出一种新的混合优化算法,称之为引入Nelder-Mead算子的改进狼群搜索算法。该算法使每只狼在搜索中可利用群体信息和个体记忆来指导其搜索猎物,以提高算法的全局搜索能力;让每只狼在搜索中可使用Nelder-Mead方法,以弥补WSA算法在局部搜索能力上的不足。针对12个基准测试实例的实验结果表明, 该算法能够寻得更优的最优解,且鲁棒性更强。  相似文献   

17.
一种具有混合编码的二进制差分演化算法   总被引:11,自引:0,他引:11  
差分演化(DE)是Storn和Price于1997年提出的一种基于个体差异重组思想的演化算法,非常适用于求解连续域上的最优化问题.首先引入"差异算子"等概念,给出DE的一种简洁算法描述,并分析了它所具有的特性.然后,为了使DE能够求解离散域上的最优化问题,基于数学变换思想引入"辅助搜索空间"和"个体混合编码"等概念,通过定义一个特殊的满射变换,在辅助搜索空间的作用下将连续域上的高效差分演化搜索变换为离散域上的同步演化搜索,由此提出了第1个二进制差分演化算法:具有混合编码的二进制差分演化算法(HBDE).接着,给出了HBDE的依概率收敛和完全收敛的定义,并利用离散Markov随机理论证明了HBDE是完全收敛的. HBDE不仅完全具有DE的各种特性和所有优点,而且非常适用于求解离散域上的最优化问题,对随机生成的大规模3-SAT问题实例和典型0/1背包问题实例的数值计算表明:该算法具有很好的全局收敛性和稳定性,其性能远远超过二进制粒子群优化算法和遗传算法.  相似文献   

18.
Feature selection is the basic pre-processing task of eliminating irrelevant or redundant features through investigating complicated interactions among features in a feature set. Due to its critical role in classification and computational time, it has attracted researchers’ attention for the last five decades. However, it still remains a challenge. This paper proposes a binary artificial bee colony (ABC) algorithm for the feature selection problems, which is developed by integrating evolutionary based similarity search mechanisms into an existing binary ABC variant. The performance analysis of the proposed algorithm is demonstrated by comparing it with some well-known variants of the particle swarm optimization (PSO) and ABC algorithms, including standard binary PSO, new velocity based binary PSO, quantum inspired binary PSO, discrete ABC, modification rate based ABC, angle modulated ABC, and genetic algorithms on 10 benchmark datasets. The results show that the proposed algorithm can obtain higher classification performance in both training and test sets, and can eliminate irrelevant and redundant features more effectively than the other approaches. Note that all the algorithms used in this paper except for standard binary PSO and GA are employed for the first time in feature selection.  相似文献   

19.
《Applied Soft Computing》2007,7(2):561-568
As an important coordination and cooperation mechanism in multi-agent systems, coalition of agents exhibits some excellent characteristics and draws researchers’ attention increasingly. Cooperation formation has been a very active area of research in multi-agent systems. An efficient algorithm is needed for this topic since the numbers of the possible coalitions are exponential in the number of agents. Genetic algorithm (GA) has been widely reckoned as a useful tool for obtaining high quality and optimal solutions for a broad range of combinatorial optimization problems due to its intelligent advantages of self-organization, self-adaptation and inherent parallelism. This paper proposes a GA-based algorithm for coalition structure formation which aims at achieving goals of high performance, scalability, and fast convergence rate simultaneously. A novel 2D binary chromosome encoding approach and corresponding crossover and mutation operators are presented in this paper. Two valid parental chromosomes are certain to produce a valid offspring under the operation of the crossover operator. This improves the efficiency and shortens the running time greatly. The proposed algorithm is evaluated through a robust comparison with heuristic search algorithms. We have confirmed that our new algorithm is robust, self-adaptive and very efficient by experiments. The results of the proposed algorithm are found to be satisfactory.  相似文献   

20.
针对传统二进制群智能算法求解0-1背包问题易陷入局部最优、收敛速度慢的缺点,提出一种新的解决离散空间问题的二进制狮群算法BLSO。二进制狮群算法对狮王、母狮和幼狮的位置重新定义,引入反置运算、移动算子和学习算子建立全新的位置转移方式和局部搜索规则;加入贪心策略进行解的可行化处理和充分利用,增强局部搜索能力,进一步提高收敛速度。对9个典型的0-1背包算例进行仿真实验,实验结果表明,该算法不仅可以有效求解0-1背包问题,而且还能够以较快的速度搜索到精度较高的次优解甚至全局最优解,具有较好的稳定性;同时,对高维背包问题的求解与参考算法相比,在寻优时间和精度上更具优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号