共查询到20条相似文献,搜索用时 82 毫秒
1.
针对轴承工作过程中早期故障样本少、故障类型不平衡的问题,提出一种基于生成式对抗网络(GAN)的数据增强方法。该方法应用快速傅里叶变换(FFT)对轴承信号进行预处理,然后将频谱作为GAN的输入,生成故障样本数据。最后,将生成的数据与原始数据结合构成新的数据集,并利用支持向量机(SVM)实现故障分类识别。通过轴承实验和统计学特性验证,表明该方法可以生成有效故障样本,同时采用扩充后的新数据集与原始数据集相比诊断准确率更高。 相似文献
2.
针对生产现场设备的故障数据有限,影响其健康诊断准确性的问题,结合振动信号的特点,设计一种改进梯度惩罚Wasserstein距离生成对抗网络的数据扩充方法。对故障信号进行快速傅里叶变换获得其频谱信号,将频谱信号作为网络的输入,由生成器产生生成信号,扩充不平衡的数据集。在轴承健康诊断实验中,该方法可以解决数据不平衡下的健康诊断问题,并与其他常用的数据扩充方法相对比,验证该方法的有效性。 相似文献
3.
针对数据不平衡分类问题,提出了一种基于主动生成式过采样与深度堆叠网络(DSN)的故障诊断方法。首先,在带有分类器的生成式对抗网络(ACGAN)的训练过程中,将Wasserstein距离作为新目标函数,为生成器提供有效梯度,并根据损失值之比自适应地调整迭代过程中生成器与判别器的训练次数,克服训练不协调所导致的模型收敛困难,以提高ACGAN的训练稳定性,改善生成样本的质量。其次,采用基于委员会查询(QBC)的主动学习算法,并设计多样性评价指标Diversity,对ACGAN生成的高信息熵样本进行二次筛选,以保证所挑选样本的多样性;同时利用筛选出的样本训练判别器,引导生成器生成信息量丰富的少数类样本。最后,在平衡数据集的基础上,训练基于DSN的故障分类模型。通过对比实验验证了所提出方法的有效性。 相似文献
4.
滚动轴承是旋转机械的关键部件,统计表明,约30%的旋转机械故障出现在滚动轴承处。人工智能的发展给工业生产中的故障诊断提供了新途径,深度学习已经成为旋转机械故障诊断的一种新颖且有效的方法。普通神经网络的训练需要大量各种情况下的带标签数据,然而现实中工业数据存在不平衡和标签成本高等问题,限制深度学习在工业实际中故障诊断的发展。这里针对滚动轴承监测数据不平衡和缺少标签等问题影响深度学习在工业领域落地应用的情况,提出一种基于半监督阶梯网络和生成对抗网络(GAN)的方法,建立GAN-SSLadder分类模型,基于公开的轴承故障数据库,实现在标签少,数据量小的情况下测试集的识别准确率达到95.5%。 相似文献
5.
针对矿井通风机故障诊断过程中样本数据有限的特点,提出了一种经差分进化算法优化的二次回归诊断方法。将样本数据分为建模数据和测试数据,测试结果表明该方法具有适用性强、操作简单、精准度高,且无需太多样本数据等特点,值得推广。 相似文献
6.
在使用传统机器学习方法进行机械设备故障诊断过程中,因运行工况复杂多变无法满足测试数据和训练数据的同分布,导致模型诊断性能不高。针对这一问题,提出了一种基于领域对抗网络的设备变工况故障诊断方法。在卷积神经网络基础上,建立了包含特征提取器、故障分类器以及领域判别器的诊断模型,对测试与训练样本进行了分析处理,通过最小化故障分类器损失和最大化领域判别器损失,实现了对机械设备的故障诊断过程;通过在轴承试验台上进行了故障诊断模拟实验,将该方法诊断结果与其他故障诊断方法结果进行了对比,验证了该诊断模型对故障的识别能力。研究结果表明:该方法取得了96%以上的平均诊断准确率,在诊断过程中具有不受训练样本和测试样本差异影响的效果。 相似文献
7.
8.
故障样本获取困难导致的训练样本不均衡严重影响故障诊断模型的可用性及准确率,因此提出一种基于自适应辅助分类器生成式对抗网络的故障样本生成模型,通过度量判别器与生成器的相对性能自适应地调节生成器损失值,使训练收敛更快、生成数据质量更好。将所提方法、辅助分类器生成式对抗网络方法生成的数据,以及未经处理的试验原始数据作为BP分类模型的输入数据进行试验,结果表明所提方法生成数据训练的模型更优。所提方法与1D-CNN、e2e-LSTM、CFVS-SVM和FFT-CNN等方法的对比结果表明,所提方法的故障诊断准确率、信息处理时间均最优。 相似文献
9.
针对相关向量机(RVM)在电机轴承故障识别中的性能受参数选择影响较大的问题,提出了基于反向认知果蝇优化算法(RCFOA)优化RVM的电机轴承故障诊断方法。为提高FOA算法的寻优能力,引入反向学习策略,对原始果蝇优化算法进行了改进。利用RCFOA进行RVM参数的优化,可以有效地提高RVM的分类性能。电机轴承不同类型、不同程度故障诊断的实例表明,RCFOA算法能够获得更优的参数,提高了RVM的故障诊断准确率,相比于其他一些方法更有优势,可有效应用于故障诊断。 相似文献
10.
基于神经网络的压缩机故障诊断 总被引:4,自引:2,他引:4
对离心式空气压缩机动不平衡的故障问题,采用神经网络的BP(Back Propagation)算法进行故障模式识别和诊断,并针对传统BP算法收敛速度慢,宜陷入局部最小的情况,从以下方面进行处理:其一,使用带动量改进型反向传播BP算法加快了收敛速度;其二,训练过程中对隐层和输出层采用了双曲正切阈值激励函数进行训练,解决了Sigmoid函数在0和1附近易陷入平坦区的情况。成功实现了故障样本空间到诊断数据空间的影射,并立在理论上给出了数学推导。 相似文献
11.
提出了一种基于辅助分类生成对抗网络的功率变换器参数性故障智能诊断方法。首先采集功率变换器的测点电压与支路电流信号,提取信号的时域特征,构成故障特征向量。采用对抗学习机制训练生成器和判别器,由ACGAN中生成器构造与真实故障特征分布近似的伪数据,从而将伪数据与真实数据同时用于训练判别器,判别器通过判别真伪数据来训练生成器。以Buck变换器为例,验证了所提出的故障诊断方法的可行性,结果表明ACGAN故障诊断方法相对于传统神经网络具有更高的故障诊断率与更优的泛化性能。 相似文献
12.
针对基于故障数据图像的诊断方法所需训练数据严重不足以及在小样本故障库条件下诊断准确率较低等问题,提出了一种基于深度卷积生成对抗网络(deep convolutional generative adversarial networks, 简称DCGAN)的扩充滚动轴承故障小样本库的方法,以丰富故障信息,在小样本故障库条件下提高故障诊断准确率。为了改善传统算法易产生的棋盘格效应,设计上采样卷积(up-sampling convolution, 简称USCONV)层,将传统DCGAN算法与双线性插值的上采样及卷积相结合,对故障数据小波变换图像进行训练学习,输出逼真的生成样本。该模型针对多种故障情况,在小样本故障库条件下能准确完善数据集,缓解过拟合等问题,提高了再诊断的准确性。实验结果表明,USCONV层对棋盘格问题有明显改善,小样本库扩充后诊断模型对包含多种故障情况的测试集识别率由91.67%提升至98.96%,证明了该方法的可行性和有效性。 相似文献
13.
轴承样本较少会使模型学习不充分,导致诊断准确性不高。为解决这一问题,构建了一种改进的卷积生成对抗网络,借助生成对抗网络的数据生成能力和改进深层卷积网络的特征提取能力,提高复杂工况下少样本轴承故障诊断准确性。首先,构建了一种深度卷积对抗生成网络,通过生成器和判别器的对抗学习挖掘真实数据的深层特征,用以生成相似的模拟数据,以弥补少样本的不足;其次,将密集块与扩容卷积引入卷积神经网络中,从深度和广度两个方面提升网络的学习能力,挖掘多类别数据中细微差距,增强复杂数据的故障特征提取性能;最后,采用定工况和变转速两种少样本轴承数据进行方法验证与对比分析,结果表明新构建的对抗网络在少样本、含噪声等复杂情形下仍然具有较高的诊断准确率。 相似文献
14.
15.
16.
针对卷积稀疏表示(convolution sparse representation,简称CSR)在轴承故障脉冲提取过程中过于依赖惩罚因子的缺点,提出了一种基于卷积稀疏表示、希尔伯特变换(Hilbert transform,简称HT)以及流形学习降维相结合的轴承故障诊断方法。首先,通过在不同惩罚因子下的CSR提取不同稀疏特征的脉冲;其次,针对提取的一系列脉冲进行希尔伯特变换,构造脉冲包络空间;最后,利用等距映射(isometric feature mapping,简称Isomap)流形学习算法对脉冲包络空间求解低维本征包络,以实现故障诊断。通过仿真数据以及台架实验数据验证表明:基于CSRHT-Isomap算法的轮对轴承故障诊断方法可以很好地提取轴承内圈及滚动体故障特征,通过与基于聚合经验模态分解和小波包变换的包络空间算法进行比较,证明该方法在提取本征包络、强化本征包络谱以及放大故障特征频率的谐波数方面具备较大优势。 相似文献
17.
旋转机械中的滚动轴承常工作在变负荷、强噪声的环境中,而传统的滚动轴承故障诊断方法难以在复杂工况下自适应地提取对其故障诊断有利的特征,针对此问题,提出一种改进AlexNet的滚动轴承变工况故障诊断方法。首先,将采集的一维时域信号按横向插样构建便于改进AlexNet输入的二维特征图,于现存的纵向插样和二维频谱而言,保留了特征自动提取过程中振动信号的时序性和关联性;其次,改进调整AlexNet卷积层的功能层且经过卷积和次采样等操作,从二维特征图中自动提取出利于滚动轴承状态辨识的特征;最后,以softmax的交叉熵为损失函数,利用Adam按小批量迭代优化法实现对滚动轴承故障的诊断。通过与多种方法对滚动轴承不同位置、不同损伤程度的12类状态诊断效果比较,结果表明,该方法对变负荷、强噪声条件下的滚动轴承故障诊断的精度更高,鲁棒性更强。 相似文献
18.
考虑齿面接触温升的影响,针对高速渐开线直齿轮动力学特性和润滑性能问题,建立摩擦动力学模型剖析齿轮润滑特性与动力学行为的耦合关系以及揭示油膜润滑机理。首先,建立含时变啮合刚度、齿侧间隙、传动误差的多自由度直齿轮弯-扭耦合动力学模型;其次,建立一维线接触瞬态混合热弹流润滑模型,通过整合得到含热效应的直齿轮摩擦动力学模型,利用龙格库塔法与多重网格法的联合迭代求解耦合系统的控制方程;最后,通过静态工况和动态工况数值计算结果的对比、摩擦动力学特性的分析以及温升的对比,证明了建立摩擦动力学耦合模型的必要性,为高速齿轮动态特性和润滑性能的改善提供分析方法。 相似文献
19.
基于 Petri 网的复合故障诊断方法的研究 总被引:5,自引:0,他引:5
讨论了将基于被诊断对象Petri网模型的诊断方法和基于知识的诊断方法有效地结合起来,形成一种复合诊断方法的问题。这种方法体现了前向诊断和后向诊断相结合,浅知识和深知识相结合的思想,在诊断的准确性和实时性方面具有优势。 相似文献