首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Optical and FT Infrared spectroscopic measurements have been utilized to investigate and characterize binary bismuth silicate glass together with derived samples by replacements of parts of the Bi2O3 by SrO, BaO, or PbO. This study aims to justify and compare the spectral and shielding behavior of the studied glasses containing heavy metal ions towards gamma irradiation. The study also aims to measure or calculate the optical energy band gap of these glasses. The replacements of parts of Bi2O3 by SrO, BaO or PbO caused some changes within the optical and infrared absorption spectra due to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+, Pb2+ ions. The stability of both the optical and infrared spectra of the studied bismuth silicate glass and related samples towards gamma irradiation confirm some shielding behavior of the studied glasses and their suitability as radiation shielding candidates.  相似文献   

2.
The quaternary glasses of mixed divalent oxides including ZnO, MgO, CdO within a phosphate network former were prepared. Vanadium pentoxide was introduced as a dopant in the range from 0.5 to 3%. Optical and infrared absorption studies for all glass samples were carried out. The optical spectra reveal the presence of both V3+ and V4+ ions in the studied host mixed divalent oxides phosphate glass. Fourier transform infrared absorption spectral analysis indicates the appearance of distinct vibrational bands due to the presence of characteristic phosphate groups depending on the glass composition and the ratio of V2O5 content. The optical band gap and Urbach energy were calculated and discussed in relation to the effect of V2O5 content. Finally, the glasses were optically and structurally examined affter gamma irradiation with a dose of 80 KGy.  相似文献   

3.
Heavy metal oxide glasses (composition 60 PbO, 20 Bi2O3 mol%) and containing 20 mol% conventional glass formers SiO2, B2O3, and P2O5 were prepared. Combined optical and Fourier transform infrared absorption spectra were measured for the prepared glasses to justify the role of glass formers in the optical spectra together with the network structural groups in such glasses. Also, the density and molar volume values were calculated to obtain some insight on the compactness and arrangement in the network. Optical measurements have been used to determine the optical band gap (Eg), Urbach energy (ΔE) and the refractive index (n). Optical spectra of all the samples reveal strong UV absorption which is related to the presence of unavoidable trace iron impurities (Fe 3+ ions) contaminated within the raw materials which were used for the preparation of the studied glasses. Additional near visible bands are observed in all prepared glasses due to characteristic absorption of Pb 2+ and Bi 3+ ions. Furthermore, The variations of the luminescence intensity, values of the optical band gap, band tail, and refractive index can be understood and related in terms of the structural changes that take place in the glass samples. The infrared absorption spectra of the prepared glasses show characteristic absorption bands related to the borate or silicate or phosphate network (BO3, BO4, SiO4, PO4 groups) together with vibrational modes due to Bi-O and Pb-O groups.  相似文献   

4.
The optical absorption spectra of undoped soda lime silicate glass together with two glasses doped with either (1 % nano Fe2O3 ) or with both (1 % Nano Fe2O3 + 5 % cement dust) have been measured from 200 to 2400 nm before and after gamma irradiation with a dose of 8 Mrad. The undoped glass reveals strong UV absorption with two distinct peaks which are attributed trace ferric iron ions present as impurity. Upon gamma irradiation , this base glass exhibits three peaks at 240,310 and 340 nm and the resolution of an induced broad visible band centered at 530 nm. The two doped glasses show an additional small visible band at about 440 nm and followed by a very broad band centered at 1050 nm. Upon gamma irradiation, the two doped samples reveal the decrease of the intensities of the spectrum. The two additional bands are related to ferric (Fe+3) ions to the band at (440 nm) while and the broad band at 1050 nm is due to ferrous iron (Fe+2) ions. The decrease of the intensities of the UV-visible spectrum upon irradiation can be related to of capturing freed electrons during irradiation . Infrared spectra of the glasses reveal repetitive characteristic absorption bands of silicate groups including bending modes of Si–O–Si or O–Si–O, symmetric stretching , antisymmetric stretching and some other peaks due to carbonate , molecular water , SiOH vibrations . Upon gamma irradiation, the IR spectra reveal a small change in the base spectrum while the IR spectra of the two doped glasses remain unchanged. The change of the IR spectrum of the base glass is related to suggested changes in the bond angles or bond lengths of the mid band structural units. The doped glasses show resistance to gamma irradiation because the nano Fe2O3 can capture released electrons and positive holes.  相似文献   

5.
Combined UV-visible and FTIR spectral studies of undoped and Nd2O3 –doped sodium silicophosphate glasses were carried out to characterize the optical and structural properties of such glasses. The base undoped silicophosphate glass exhibits strong UV absorption which is due to the presence of unavoidable trace iron impurities (mainly Fe3+ ions) present contaminated within the raw materials used for the preparation of such glasses. Nd2O3 –doped glasses show characteristic absorption bands extending in the entire visible region which are attributed to the contribution of Nd3+ ions with distinct peaks which are almost constant with the increase of dopant. This comes from the combined compact glass structure containing two glass forming units and the shielding of the rare-earth ions. Infrared absorption spectra of the studied glasses reveal characteristic IR bands due to the combination of both silicate and phosphate groups. The introduction of Nd2O3 within the dopant level (2 %) produces no variations in the IR vibrational bands due to the presence of the two structural silicate and phosphate groups giving compactness of the network structure. The deconvoluted spectra reveal the presence of phosphate groups in a slightly high ratio due to the high content of P2O5 in the composition.  相似文献   

6.
Optical absorption spectral investigations have been carried out on Fe3+ ions doped sodium borate, sodium silicate and sodium phosphate glasses before and after gamma irradiation. The UV-visible absorption spectrum exhibits bands characteristic of Fe3+ ions coordination in each system. Interesting aspects of FT-IR spectra were found, and this gives information about the structure changes in the constituent units of these glass systems as a function of Fe2O3 concentration. All glasses reveal characteristic absorption bands due to the addition of different ratios of iron which explain the state of iron in each system in terms of its valence and coordination number. Results indicate that iron favors a higher oxidation state (tetrahedral coordination) in the case of sodium silicate glasses. The doping with progressive Fe2O3 additions (0.5?7.5 %) has some effect on the number and position of the characteristic bands due to formation of FeO4 groups. The IR absorption spectra after irradiation reveal limited changes in the intensity which can be correlated with minor changes in bond angles and /or bond lengths within the structural units by irradiation.  相似文献   

7.
Undoped and MoO3- or WO3- doped lead phosphate glasses were prepared by the melting-annealing technique. The glasses were characterized through UV-visible and infrared measurements which were repeated after gamma irradiation. Optical spectrum of binary lead phosphate glass shows distinct ultraviolet bands correlated with unavoidable trace iron impurities within the chemicals used for the preparation of the glasses. UV-visible absorption spectra of MoO3- or WO3- doped glasses exhibit additional UV-visible bands which are related to the presence of four oxidation states of the two transition metal (molybdenum or tungsten) ions (Mo3+, Mo4+, Mo5+, Mo6+, W3+, W4+, W5+, W6+). The extra UV band is related to hexavalent (5d0) state while the rest of the visible bands are related to (350–440 nm - trivalent state), (450, 550, 650 nm - tetravalent state) while the broad band centered at about 770 nm (pentavalent state). The intensities of the absorption bands are observed to change with the transition metal content and their valencies. Infrared absorption spectra reveal distinct vibrational bands which are assigned to phosphate groups with sharing of Pb-O vibrations within both the range 460–620 cm-1 and the range 900–1100 cm-1 revealing a compact network structure. Gamma irradiation causes a minor increase in intensity of one of the UV band due to suggested photo-oxidation of some trace ferrous ions to additional ferric ions but the remaining spectral curve remains unaffected which is obviously related to some shielding effects of heavy atomic weight of PbO. This heavy metal oxide (PbO) is assumed to retard or prohibit the free passage of free electrons or positive holes generated during the irradiation process.  相似文献   

8.
A series of Ce3+/Dy3+‐doped oxyfluoride borosilicate glasses prepared by melt‐quenching method are investigated for light‐emitting diodes applications. These glasses are studied via X‐ray diffraction (XRD), optical absorption, photoluminescence (PL), color coordinate, and Fourier transform infrared (FT‐IR) spectra. We find that the absorption and emission bands of Ce3+ ions move to the longer wavelengths with increasing Ce3+ concentrations and decreasing B2O3 and Al2O3 contents in the glass compositions. We also discover the emission behavior of Ce3+ ions is dependent on the excitation wavelengths. The glass structure variations with changing glass compositions are examined using the FT‐IR spectra. The influence of glass network structure on the luminescence of Ce3+/Dy3+ codoped glasses is studied. Furthermore, the near‐ideal white light emission (color coordinate x = 0.32, y = 0.32) from the Ce3+/Dy3+ codoped glasses excited at 350 nm UV light is realized.  相似文献   

9.
The structural, physical, and optical properties of prepared glass samples of the composition formula 30SiO2-(40-x)B2O3-20Na2O-10Al2O3-xY2O3, where x = 0, 1, 5, 7 (wt%) were studied before and after gamma irradiation using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The optical absorption spectra of study glasses were recorded in the UV/visible range of 200–900 nm. The optical band gap energies were calculated from absorption data. These results show that Eopt decreases with increasing concentration of Y2O3. The changes occurring in the optical parameters obtained from absorption spectra before and after irradiation have been referred to irradiation induced structural defects and compositional changes.  相似文献   

10.
Dy3 + -doped lead phosphate glasses were prepared by a melt quenching technique and investigated through Infrared absorption spectra (IR), photoluminescence (PL), and UV-Visible optical absorption measurements (UV-Vis). The luminescence spectra show two intense bands at 483 and 575 nm, which are attributed to 4FH15/2 (blue) and 4FH13/2 (yellow) transitions, respectively. The optical spectra data was used to evaluate the values of indirect allowed transitions. It was found that the optical band gap increases with Dy2O3 content. Variation in optical gap energy with the variation in localized state tails, confirms the theories for localized states in the energy gap of amorphous semiconductors. The characteristic infrared absorption bands of these glasses due to the stretching and bending vibrations were identified and analyzed by the increasing of the Dy2O3 content. This fact allowed us to identify the specific structural units which appear in these glasses.  相似文献   

11.
Bismuth-containing high-silica glass is synthesized by impregnating porous glass matrices in 0.01–0.5 M aqueous solutions of bismuth nitrate with the subsequent heat treatment at a temperature of 50–875°C. The dependences of the spectral-optical properties of the synthesized glass on the concentration of the doped bismuth (0.02–1.17 wt % Bi2O3) and heat treatment temperature are studied. It is found using the method of optical spectroscopy that bismuth is present in glass in different oxidation states—Bi3+, Bi2+, and \(\rm{Bi_5^{3+}}\) clusters. Near infrared spectroscopy in the 7500–4000 cm–1 frequency range reveals that an increase in the temperature results in a gradual decrease in the intensity of the absorption bands due to the vibration of hydroxyl groups and water molecules adsorbed on the surface. The glasses (T ~ 50 and 400°C) exhibit bands at 4445–4443, 4433, and 4417–4415 cm–1, which correspond to the absorption of Bi+ ions.  相似文献   

12.
《Ceramics International》2022,48(14):20041-20052
The growing demand for radiation-resistant optical glasses for space and nuclear radiation applications has attracted significant research interest. However, radiation-resistant fluorophosphate glasses have been poorly studied. In this work, we report on the tailoring and performance of radiation-resistant fluorophosphate glasses that contained cerium through codoping with Sb2O3 and Bi2O3. The physical properties, optical properties, microstructure, and defects of fluorophosphate glasses were investigated using transmittance measurements, absorption measurements, as well as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. The results showed that the radiation resistance of all codoped fluorophosphate glasses was better than the undoped cerium-containing fluorophosphate glasses after 10–250 krad(Si) irradiation. Especially in glasses doped with Bi2O3, the optical density increment at 385 nm was only 0.1482 after 250 krad(Si) irradiation. The CeO2 prevented the development of phosphate-related oxygen hole center (POHC) defects, whereas further codoping with Bi2O3 suppressed the formation of oxygen hole center (OHC) and POEC defects, reducing the breaking of phosphate chains caused by CeO2. Bi3+ is more likely than Sb3+ to change the valence, affecting the transition equilibrium of intrinsic defects and reducing the concentration of defects produced by irradiation. When codoping with Sb2O3 and Bi2O3, Bi2O3 does not enhance radiation resistance owing to the scission effect of Sb2O3 on the phosphate chain, which is not conducive to the radiation resistance of glasses. This indicates that the cerium-containing fluorophosphate glasses doped with Bi2O3 can effectively suppress the defects caused by irradiation and improve the radiation resistance of the glasses.  相似文献   

13.
Four soda lime silicate glass samples of composition (70 % SiO2+ 20 % Na2O+ 10 % CaO mol %) were prepared after adding 5 wt% cement dust to each sample mixture besides 0.1 wt% of one transition metal (TM) oxide of Fe, Co or Cu. The four samples were melted by a conventional melt-annealing technique at 1400 °C for 2.5 h. Density, UV/VIS, FTIR and DC conductivity measurements were performed for each glass. Experimental results indicate that there are only slight differences in the density values. The optical spectra reveal that the TM free sample and the sample containing iron ions have the same spectral features while the samples containing copper or cobalt exhibit distinct characteristic absorption bands due to each TM ion. FTIR spectra reveal characteristic vibrational bands due to stretching and bending modes of the silicate network. DC conductivity data show variations in the values of the studied samples according to the type of TM ions added. All the experimental results were correlated with each other in accordance with the current views on the constitution of the studied glasses.  相似文献   

14.
《Ceramics International》2019,45(10):13112-13118
Nowadays, visible fluorescent materials based on rare earth (RE) and non-RE ions doping have been extensively explored for white LEDs. As for the UV fluorescent materials, it is well known that they are not suitable for the lighting applications. As a result, when compared to the visible fluorescent materials, previous works paid little attention to the UV fluorescent materials. In this work, we report a type of Mg3Y2Ge3O12:Bi3+ UV fluorescent phosphor. To understand the crystal structural information and photoluminescence (PL) properties of samples, we have used the X-ray diffraction (XRD), scanning electronic microscope (SEM), UV–visible diffuse reflectance and PL spectra to characterize them. The structural results reveal that the Bi3+ doped sample show their particle size at about 30 μm. The PL results show that the Bi3+ doped sample upon excitation at 230 nm can show a broad emission band that can almost cover the whole UV spectral region from 290 nm to 410 nm. Since this UV fluorescent band is exactly in agreement with the UV absorption region of TiO2 semiconductor, we have fabricated several Mg3Y2Ge3O12:Bi3+/TiO2-based ceramic plates and proposed used them to serve as an efficient UV irradiation source for photocatalytic application. As a result, we find that the TiO2 can exhibit the significantly enhanced photocatalytic property for the heavy oil viscosity reduction after adding the Mg3Y2Ge3O12:Bi3+ UV fluorescent phosphor.  相似文献   

15.
《Ceramics International》2020,46(6):7131-7141
Bismuth niobate semiconductors are of considerable interest in both contaminant degradation and H2-generation. However, the wide band gap strictly limits the optical absorption in visible-light wavelength. In this work, a new niobate semiconductor Bi3Nb17O47 was prepared with co-precipitation synthesis. To modify the band structure, Te4+-, Ti4+-, and Te4+/Ti4+-doping were conducted in Bi3Nb17O47 lattices. Rietveld refinements were used to investigate the crystal phase and structure. The UV–vis absorption measurements concluded that Te4+-, Ti4+- doping could greatly modify the band energy of Bi3Nb17O47. The Te4+/Ti4+-doped sample could harvest more visible light in the longer-wavelength region being favorable for photocatalysis performances. This was verified by RhB photodegradation tests under the visible-light irradiation (λ > 420 nm). To discuss the photocatalytic mechanisms, XPS and impedance spectra were measured. The improved photocatalysis was related to the microstructure changes, charge carrier dynamics, oxygen vacancies, and redox couples of multivalent ions. The present work provides a valid route to modify the band structure and to improve the photocatalysis abilities via impurity ions Te4+/Ti4+-doping in bismuth niobate semiconductors.  相似文献   

16.
PVA films with various filling levels of CrF3 and MnCl2 were prepared. ESR and UV/VIS optical analysis were used to shed more light on the structural modification that occur due to filling with different levels and/or UV irradiation. The ESR analysis revealed that the spin configuration of CrF3, MnCl2, and CoBr2‐filled PVA are different. The filling level dependence of ESR parameters was discussed. The UV‐VIS spectral analysis for pure PVA shows absorption bands at 265 and 280 nm, which were assigned to the presence of carbonyl groups. The addition of CrF3 led to the appearance of another bands at 418 and 596 nm. The filling level and/or UV irradiation have no effect on the position of absorption bands but the intensity of these bands has been changed. The addition of MnCl2 led to a new band at about 350 nm due to charge transfer transition. The ligand field parameters and optical energy gaps can be calculated and discussed. The results of optical and ESR analysis indicated that the Cr3+ or Mn2+ are present in its octahedral symmetrical form within the PVA Matrix. SEM micrographs of CrF3 filled PVA is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 104–111, 2003  相似文献   

17.
This study is focused on investigating the role of bismuth oxide (Bi2O3) nanoparticles to improve structural, optical, electrical, and mechanical properties of low-density polyethylene (LDPE). For this purpose, Bi2O3 nanoparticles were synthesized by using the solvothermal method and examined by transmission electron microscopes (TEM), x-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, and ultraviolet–visible (UV–Vis) light absorption methods. LDPE-based nanocomposites were prepared by changing the nanoparticle additive ratio in the composite from 0% to 2% by weight. The composites were analyzed in the context of their FTIR spectra, atomic force microscope (AFM) images, UV–Vis light absorption spectra, stress–strain curves, and energy storage abilities. While the AFM findings indicate a smoother surface for the composites, the optical band gap analysis reveals a slightly decreased direct optical band gap energy. The analyses based on dielectric spectroscopy also highlight the LDPE/0.5% n-Bi2O3 composite in terms of the best energy storage capability. Additionally, the highest Young's modulus, toughness, stress at break, and percentage of strain at break were also recorded for the LDPE/0.5% n-Bi2O3 composite. In this context, the LDPE/0.5% n-Bi2O3 composite with improved dielectric and mechanical properties can be suggested as a new promising LDPE-based nanocomposite with better properties for industrial purposes.  相似文献   

18.
《Ceramics International》2019,45(15):18831-18837
Er/Yb co-doped transparent glass ceramics containing nanocrystalline Bi2ZnB2O7 were successfully prepared by a high-temperature melting method. X-ray diffraction analysis confirmed the structural properties of the crystal and glass phases of the glass ceramics. Scanning electron microscope images indicated that nanocrystalline Bi2ZnB2O7 with an average size of 30–40 nm was uniformly distributed in the glass matrix. Infrared spectroscopy demonstrated that the glass and glass ceramics had different vibrational peaks. The absorption spectra showed the absorption peaks of the samples, and the main spectral parameters of each absorption peak were calculated using the Judd–Ofelt theory. The emission spectra of the samples showed ultra-wideband fluorescence from 1400 to 1700 nm under excitation at 980 nm, which was enhanced by precipitation of nanocrystalline Bi2ZnB2O7 and the addition of Yb3+ ions. Our research showed that Er/Yb co-doped glass ceramics containing nanocrystalline Bi2ZnB2O7 are a promising material for application in near-infrared optical amplifiers.  相似文献   

19.
A soda-lime-silicate glass is exposed to beta radiation from an 90Sr source and gamma radiation from a 60Co source. Under exposure to radiation of the 90Sr and 60Co radioisotopes, the glass changes its color depending on the irradiation doses. The effect of beta irradiation on the optical properties of the glass is compared with that of gamma irradiation. The optical properties of the irradiated glasses differ significantly from those of the unirradiated glasses. Under exposure to beta and gamma radiation, the three main optical absorption bands appear at ~380–460, ~620, and ~1050 nm. It is established that the absorption band at ~420 nm, which is attributed to Fe3+ ions, is very sensitive to beta and gamma irradiation.  相似文献   

20.
High-energy radiation in space and nuclear irradiation environment induces colour centres in optical glass, causing solarisation, and a serious condition can render optical systems and optical loads unusable. To develop space radiation-resistant optical glass, CeO2-stabilised radiation-hard fluorophosphate glass was prepared under three different atmospheres (nitrogen, oxygen, and ambient air). The glass-melting atmospheres' effects on the glass's transmission, defect formation, and structural changes before and after exposure to gamma radiation were investigated by a comprehensive study on their transmittance, absorption, and electron paramagnetic resonance spectra. Introducing a small amount of CeO2 (~0.34 wt%) into the fluorophosphate base glass converted NBO and BO into ABO in the glass network, red-shifted the UV absorption edge, and decreased the optical density increment by almost half after radiation. As the total dose of gamma radiation increased, the transmittance of the irradiated glass at a wavelength of 385 nm significantly increased due to absorption of POHC2 defects. After exposure to 250 k of rad gamma irradiation, the corresponding optical density increment per centimeter thickness at 385 nm of the radiation-hard fluorophosphate glass that melted in the nitrogen, oxygen, and air atmospheres decreased from 1.839 to 1.388 and 1.215. As it melted in air, the NBO ratio of the fluorophosphate glass reached the lowest level and the Ce4+ ratio in the glass was 92.49%, which helped suppress the generation of POHC, Fe3+, PO4-EC, and PO3-EC defects during the gamma irradiation process, improving the glass's radiation resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号