首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种三元共聚型聚酰亚胺的制备与表征   总被引:1,自引:0,他引:1  
以3,3'-二甲基-4,4'-二氨基二苯甲烷、1,3-双(4-氨基苯氧基)苯(1,3-APB)与3,3',4,4'-二苯醚四羧酸二酐(ODPA)进行缩聚反应,制得一种新型的三元共缩聚型聚酰亚胺。将此聚合物与两种二元共缩聚型聚酰亚胺的性能进行对此,发现三元共聚型聚酰亚胺的溶解性能、力学性能和热性能皆较好,且使用范围扩大。  相似文献   

2.
余彬  蒋彩荣  汪称意  赵晓燕  李坚  任强 《精细化工》2019,36(12):2406-2410,2430
以2,2′-双(三氟甲基)-4,4′-二氨基联苯(TFMB)、4,4-二氨基二苯醚(ODA)和3, 3′,4,4′-二苯醚四甲酸二酐(ODPA)为原料,间甲酚为溶剂,按不同的配比,采用一步法制备了一系列低成本含氟共聚型聚酰亚胺CPI-1~CPI-4,进一步制备成膜。通过红外光谱仪、核磁共振波谱仪对该系列含氟聚酰亚胺的结构进行了表征确认。采用UV光度计、TGA、DSC、拉伸性能试验机对其溶解性能、光学性能、热性能、机械性能进行了测试。结果表明,该系列含氟聚酰亚胺室温下能溶于二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)、三氯甲烷(CHCl_3)等有机溶剂,具有较好的溶解性和成膜性。所制薄膜具有优良的光学透明性,在紫外光波长400nm时的透光率均在70%以上。CPI-1~CPI-4的起始分解温度均大于500℃,N_2氛围下800℃的质量残留百分数均在52%以上,玻璃化转变温度在166~170℃。此外,CPI-1~CPI-4薄膜的拉伸强度在89.8~105.3MPa,弹性模量在1.3~1.7 GPa,断裂伸长率在9.7%~18.4%,表现出较好的机械性能。  相似文献   

3.
用2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)及3,5-二氨基苯甲酸(DABA)作为二胺,2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,分别经热亚胺化和化学亚胺化过程合成了可溶性共聚聚酰亚胺。用FT-IR对聚合物的结构进行了表征,性能测试采用了溶解性测试、DSC、TGA、拉伸测试和吸水率测试。FT-IR图谱表明,在1 780cm~(-1)、1720 cm~(-1)和740 cm~(-1)左右出现了聚酰亚胺的特征吸收峰。共聚聚酰亚胺在常见有机溶剂中可溶,并且有很好的热稳定性,玻璃化转变温度T_g为226.5℃,在氮气氛中降解起始温度508.5℃,800℃质量保持率为46.5%。共聚聚酰亚胺膜的拉伸强度、拉伸模量、断裂伸长率分别为109.7MPa、2.25GPa和15.2%。  相似文献   

4.
用2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4,4′-二氨基二苯甲烷(MDA)作为二胺,3,3,′4,4′-二苯醚四羧酸二酐(ODPA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,分别经热亚胺化和化学亚胺化过程合成了可溶性共聚聚酰亚胺。用FT-IR对聚合物的结构进行了表征,FT-IR测试结果表明在1 780 cm-1、1 720 cm-1和725 cm-1左右出现了聚酰亚胺的特征吸收峰。采用溶解性测试、DSC、TGA、拉伸测试和吸水率测试对产物的性能进行了测试。共聚聚酰亚胺在常见有机溶剂中可溶,并且有很好的热稳定性,在氮气氛中,起始降解温度超过500℃,800℃质量保持率为58.2%。共聚聚酰亚胺膜的拉伸强度、拉伸模量、断裂伸长率分别为103.5 MPa,2.36 GPa和11.7%。同时共聚聚酰亚胺膜还有很低的吸水率,为0.87%。  相似文献   

5.
用4-苯基-2,6-双(4-氨基苯基)吡啶作为二胺,3,3′,4,4′-二苯醚四羧酸二酐和双酚A型二酐作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,分别经热亚胺化和化学亚胺化过程合成了3种聚酰亚胺。用傅里叶变换红外光谱对聚合物的结构进行表征,表明在1 780,1 720,725cm-1附近出现了聚酰亚胺的特征吸收峰。采用溶解性测试、X射线衍射、热重分析、拉伸测试和吸水率测试表征了产物性能。所合成的共聚聚酰亚胺溶解性较好,溶于常见有机溶剂。所合成的聚酰亚胺膜热稳定性良好,在氮气氛中,起始降解温度超过500℃,10%失重温度为547.1~601.5℃,800℃质量保持率为64.8%~67.2%。聚酰亚胺膜的拉伸强度、拉伸模量、断裂伸长率分别为105.8~112.6 MPa,2.24~2.32 GPa,9.5%~10.2%。膜的吸水率为0.96%~0.98%。  相似文献   

6.
以2,3,3',4'-二苯醚四甲酸二酐(a-ODPA)和4,4′-二氨基二苯醚(ODA)为单体原料,在二甲基乙酰胺(DMAC)中聚合,通过化学亚胺化合成了一种新型聚酰亚胺,并在高温高压下模塑成型。通过热重分析(TGA)、差示扫描量热分析(DSC)和动态机械分析(DMA)等,对该聚酰亚胺的热性能进行了研究,并将其与以3,4,3',4'-二苯醚四甲酸二酐(s-ODPA)和ODA为单体原料合成的聚酰亚胺(牌号:YS20)进行比较。结果表明该聚酰亚胺具有良好的机械性能、热性能和加工性能,可以广泛应用于航空航天、飞机、汽车、微电子等领域。  相似文献   

7.
以3,3’-二氨基二苯砜(DDS)和4,4’-二氨基二苯醚(ODA)作为共缩聚二胺单体,与3,3’,4,4’-二苯酮四羧酸二酐(BTDA)进行缩合聚合,合成了一系列具有一定溶解性的共聚酰亚胺。采用升温红外光谱监控了聚酰胺酸热环化为聚酰亚胺的过程,对所得产物的热稳定性和力学性能进行研究,发现二胺单体的组成对共聚酰亚胺的性能产生较为明显的影响。  相似文献   

8.
通过湿法纺丝工艺制备了3,3′,4,4′-聚苯四甲酸酐(BPDA)-均苯四甲酸酐(PMDA)-对苯二胺(PPDA)三元共聚型聚酰亚胺纤维和用4,4′-二氨基二苯醚(ODA)部分代替PPDA的四元共聚型聚酰亚胺纤维,柔性单体ODA的引入有效提高了共聚纤维的断裂伸长率,但引起断裂强度、初始模量和玻璃化转变温度及热分解温度的降低。采用Kissinger和Flynn-Wall-Ozawa两种方法对两种纤维在空气中的热分解表观活化能进行了计算,均是加入ODA单体的共聚纤维的热分解表观活化能较低,由此造成其耐热性下降。  相似文献   

9.
以邻甲酚酞与2-氯-5-硝基三氟甲苯为起始原料,通过两步有机反应——芳香亲核取代和氧化还原反应得到芳香二胺单体——4,4"-(2,2’三氟甲基)-二氨基苯氧基-3,3"-二甲基酚酞。利用共聚改性的思路,由两种二胺单体〔4,4"-(2,2"三氟甲基)-二氨基苯氧基-3,3"-二甲基酚酞和2,6-二氨基甲苯〕与一种二酐单体3,3",4,4"-二苯醚四甲酸二酐(ODPA)通过不同投料比以一步法高温缩聚制备得到同时含酚酞、三氟甲基和烷基结构系列共聚型聚酰亚胺。该系列共聚型聚酰亚胺具有优异的溶解性,在室温下不仅可溶于常见的高沸点溶剂:N-甲基吡咯烷酮(NMP),N,N-二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)和二甲基亚砜(DMSO),在低沸点溶剂氯仿(CHCl3)、二氯甲烷(CH2Cl2)和四氢呋喃(THF)中也表现出优异的溶解性,可便利地通过其溶液浇筑制备得到系列高性能聚酰亚胺膜材料。该类膜材料玻璃化转变温度在275~314 ℃,其在N2和O2氛围中热失重10%时的温度分别为477~507 ℃和477~49 0 ℃。该类膜材料具有低的介电常数和良好的力学性能:其在1 MHz下介电常数在2.69~2.92之间,拉伸强度、弹性模量和断裂伸长率分别在80~92 MPa、1.2~1.8 GPa和9.2 %~13.5%之间。  相似文献   

10.
采用均苯四甲酸二酐(PMDA),4,4′-氧双邻苯二甲酸酐(ODPA)和对苯二胺(PDA)共聚制备了聚酰胺酸(PAA),经热亚胺化得到聚酰亚胺(PI)薄膜。利用红外光谱(FTIR)、力学性能测试、静态热力学分析仪(TMA)、热失重分析仪(TGA)等研究了PI薄膜的性能。结果表明:制备的PI薄膜热膨胀系数较低,当PMDA与ODPA物质的量比为6∶4时,热膨胀系数为1.3×10-5 K-1,小于铜箔的热膨胀系数,说明具有良好的尺寸稳定性;热失重5%的温度(T5%)为582.5℃,热稳定性好。同时薄膜具有较好的力学性能和优异的介电性能。  相似文献   

11.
以2,2-双(3-苯基-4-羟基苯基)丙烷(双OPP-A)、对硝基氯苯、无水碳酸钾为基本原料,在冠醚作为相转移催化剂的作用下缩合制得2,2-双[3-苯基-4(4-硝基苯氧基)苯基]丙烷(BPNPOPP);在此基础上,采用水合肼还原得到2,2-双[3-苯基-4(4-氨基苯氧基)苯基]丙烷(BPAPOPP)单体.将其与均苯四甲酸二酐(PMDA)通过缩聚反应、热环化制备了一种联苯型多苯氧基聚酰亚胺.结果表明:缩合制备BPNPOPP,收率达到97.8%以上.还原制备BPAPOPP单体,熔点160.6~161.3℃.此种单体制备的聚酰亚胺玻璃化转变温度为233.2℃,易于加工;热分解温度(质量损失率10%)为503.8℃,具有很好的耐热性能;拉伸强度达到111.8 MPa,断裂伸长率为6.68%,薄膜的热膨胀系数为49.7×10-6K-1,是一种性能优良的材料.  相似文献   

12.
采用4,4'-六氟异丙基邻苯二甲酸酐(6FDA)、均苯四甲酸二酐(PMDA)、3,3',4,4'-联苯二酐(s-BPDA)、2,2'-双(三氟甲基)-4,4'-二氨基联苯(TFMB)、对苯二胺(p-PDA)、联苯胺(HMB)和4,4'-二氨基-2,2'-二甲基-1,1'联苯(m-TOL)共聚制备了聚酰胺酸(PAA)溶液...  相似文献   

13.
含噁唑环支链的苯氧型共聚聚酰亚胺的合成与表征   总被引:2,自引:0,他引:2  
以3,5-二硝基苯甲酰氯和邻氨基苯酚为原料合成了含苯并噁唑基团的二胺,然后将其与二氨基二苯醚(ODA)和二苯醚四甲酸二酐(ODPA)进行常温共聚合成聚酰胺酸,最后采用两步法合成了含苯并噁唑支链的可溶性聚酰亚胺(PI)。采用红外光谱(FT-IR)、差示扫描量热法(DSC)和热重分析(TGA)等测试手段分析了该PI的结构、热性能和在各溶剂中的溶解性能。实验结果表明,经300℃热处理1h后,聚酰胺酸转化为酰亚胺化比较完全;引入苯并噁唑支链基团可以提高PI的耐热性,其玻璃化转变温度(Tg)在300℃左右,初始热分解温度为552.5℃;该PI在强极性溶剂中溶解性能良好,但不溶于一般的极性溶剂中,说明其在提高加工性能的同时仍能保持耐一般溶剂的性能。  相似文献   

14.
以3,5-二硝基苯甲酰氯和邻氨基苯酚为原料合成了含苯并嗯唑基团的二胺,然后将其与二氨基二苯醚(ODA)和二苯醚四甲酸二酐(ODPA)进行常温共聚合成聚酰胺酸,最后采用两步法合成了含苯并嗯唑支链的可溶性聚酰亚胺(PI)。采用红外光谱(FT—IR)、差示扫描量热法(DSC)和热重分析(TGA)等测试手段分析了该PI的结构、热性能和在各溶剂中的溶解性能。实验结果表明,经300℃热处理1h后,聚酰胺酸转化为酰亚胺化比较完全;引入苯并嗯唑支链基团可以提高PI的耐热性,其玻璃化转变温度(L)在300℃左右,初始热分解温度为552.5℃;该PI在强极性溶剂中溶解性能良好,但不溶于一般的极性溶剂中,说明其在提高加工性能的同时仍能保持耐一般溶剂的性能。  相似文献   

15.
用9,9-双(3-氟-4-氨基苯基)芴(FFDA)与4,4'-二氨基二苯醚(ODA)作为二胺,以1,2,4,5-均苯四甲酸二酐(PMDA)为二酐,以DMF为溶剂,通过化学酰亚胺化法制备PI(FFDA-PMDA-ODA)。由于引入氟基团、柔性醚键和芳香刚性非平面共轭结构,PI具有较好的溶解性,优异的光学透明性和良好的热稳定性。其可见光区透过率超过80%,紫外截止波长低至368 nm;玻璃化转变温度高达370℃,5%的热失重温度为558℃,10%的热失重温度高达585℃。  相似文献   

16.
用2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4-苯基-2,6-双(4-氨基苯基)吡啶(PBAP)作为二胺,3,3′,4,4′-二苯醚四羧酸二酐(ODPA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,分别经热亚胺化和化学亚胺化合成了3种聚酰亚胺。用傅里叶变换红外光谱和核磁共振氢谱表征聚合物的结构,结果表明在1 780,1 720,725 cm~(-1)附近出现了聚酰亚胺的特征吸收峰。采用热重分析,溶解性、拉伸性能和吸水率测试表征了产物性能。所合成的聚酰亚胺溶解性和热稳定性良好,在N_2气氛中,起始降解温度超过500℃;800℃质量保持率为46.2%~64.5%(化学亚胺化)和52.6%~64.8%(热亚胺化)。聚酰亚胺膜的拉伸强度、拉伸断裂应变、拉伸模量分别为107.2~109.6 MPa,7.8%~10.5%,2.13~2.28 GPa。膜的吸水率为0.68%~0.75%。  相似文献   

17.
:在水介质中进行了丙烯酰胺(AM)与2-丙烯酰胺基-2-甲基丙磺酸(AMPS)的溶液共聚合,优选出单体含量10%,AMPS摩尔含量17.5%,引发剂加量为单体质量的0.05%,反应温度为50℃,反应时间为10h的最佳反应条件.考察了共聚物的抗温性能及对不同盐的承受能力并与丙烯酰胺均聚物做了对比,结果表明磺酸基团的强阴离子性与庞大侧基的位阻效应,赋于磺酸盐型聚丙烯酰胺P(AM/AMPS)优良的耐温与抗盐性能.  相似文献   

18.
采用4,4′-氧双邻苯二甲酸酐(ODPA),对苯二胺(PDA)以及4,4′-二氨基二苯醚(ODA)为反应单体合成聚酰胺酸。涂覆法制备单面2层挠性覆铜板,继续高温压合得到高剥离强度的2层双面挠性覆铜板,并将聚酰胺酸热亚胺化得到聚酰亚胺薄膜。利用傅里叶红外光谱(FTIR)、差示扫描量热仪(DSC)等对覆铜板及聚酰亚胺薄膜的性能进行表征。结果表明:15MPa,230℃,20min下压合制备的2层双面挠性覆铜板,其剥离强度达到1.2kN/m,双面板之间的薄膜基本酰亚胺化,拉伸强度超过100 MPa。  相似文献   

19.
PA封端型聚酰亚胺的合成与表征   总被引:3,自引:2,他引:1  
以均苯四甲酸二酐(PMDA)和自制的1,3-双(4-氨基苯氧基)苯(TPER)在邻苯二甲酸酐(PA)封端的情况下溶液缩聚得到聚酰胺酸(PAA),通过溶液亚胺化和固相亚胺化相结合得到聚酰亚胺(PI).用傅立叶变换红外光谱仪、乌氏粘度计和热失重分析仪对PI进行了结构表征和性能测试,分析了封端剂加入量、亚胺化方式对PI性能的影响.结果表明,封端剂的加入可有效降低PI的粘度,两种亚胺化方式的结合可以降低PI的最终亚胺化温度,得到的PI热稳定性高.  相似文献   

20.
侧链型偶氮聚酰亚胺的合成与表征   总被引:1,自引:0,他引:1  
将对氨基偶氮苯单体接枝到聚苯乙烯-马来酸酐共聚物上,合成了侧链型偶氮聚酰亚胺,并对其化学结构、热稳定性、光响应性以及光电性能进行了研究.结果表明,偶氮聚酰亚胺具有很好的水溶性,其加工和应用范围扩大;聚合物主链在312 ℃时分解;当水溶液呈中性时,在365 nm附近的吸收峰最强;而在酸性或碱性条件下,吸收峰强度逐渐降低,同时发生红移.另外,研究发现在365 nm紫外光照射下,该水溶液的导电性随照射时间的延长而增大,当置于可见光下42 h后电导率又恢复到未照射前的值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号