首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
利用岩石伺服试验系统,对经历25℃~900℃作用后的花岗岩试样进行三轴卸围压试验,研究高温后花岗岩在卸荷路径下的变形特性、参数特征及破坏形态。结果表明:经历300℃后的岩样围压卸荷量最少,最容易发生破坏。基于应变围压增量比,定量揭示了卸荷破坏是由强烈的径向变形和体积扩容所致。随着温度上升,各应变围压增量比均先增大后减小,在300℃时达到最大。卸荷过程中岩样的变形模量逐渐减小,25℃~900℃之间,减小33.20%~59.11%,且温度越高减小越多,与体积应变均呈二次多项式相关;泊松比逐渐增大,25℃~900℃之间,增大164.96%~274.03%,且温度越高增加越多,与体积应变均呈线性相关。高温后的岩样在单轴压缩下均呈轴向劈裂破坏,并存在多个贯通裂纹;在三轴压缩下为宏观单一的贯通剪切破坏形态;三轴卸围压下破坏形态则比较复杂,常温时为高角度的局部剪切破坏,随温度升高,岩样变为贯通剪切破坏,到900℃时又变为局部剪切破坏。  相似文献   

2.
徐小丽  高峰  张志镇 《岩土工程学报》2014,36(12):2246-2252
利用MTS815.02电液伺服材料试验系统完成了不同温度作用后(25℃~1000℃),不同围压下的30块花岗岩岩样的三轴压缩试验,分析了温度、围压对岩样的变形以及强度特性的影响。试验结果表明:①岩样质量随着温度的升高小幅下降,1000℃时仅比25℃时下降了0.364%;温度低于600℃时,岩样体积、密度变化不明显,温度高于600℃时,体积加速膨胀,密度减小幅度增大,1000℃时体积比25℃时膨胀了5.027%,密度降低了5.132%。②高温作用后,岩样三轴压缩应力-应变曲线大致经历了压密、弹性、屈服、破坏、软化、残余等几个阶段,岩样的刚度、峰值强度、抗剪强度、残余强度、塑性变形均随着围压的增大而增大。③岩样黏聚力随着温度的升高呈线性下降,内摩擦角随着温度的升高先增大后减小,抗剪强度随着温度的升高呈二次多项式减小关系,围压的增大削弱了温度对抗剪强度的影响。  相似文献   

3.
利用TUA2000A型超声波无损检测仪和RMT–150B型岩石力学伺服试验机,对高温度后粗砂岩波速、试件质量与三轴抗压强度进行了研究。研究表明:(1)波速随温度递增呈非线性降低,在400℃~800℃阶段波速降低幅度最大;(2)试件质量虽然随温度增加而减小,但试件质量减小有限,温度影响可以忽略;(3)高温后粗砂岩三轴抗压强度与围压呈线性关系,围压系数为常数,单轴抗压强度理论值受温度与围压影响;(4)高温后粗砂岩内摩擦角保持不变,其黏聚力受温度影响显著;(5)建立含有温度和围压阀值的粗砂岩三轴抗压强度公式,能够准确反映温度、围压对三轴抗压强度的影响。  相似文献   

4.
通过对经历400℃~1 000℃高温后的粗砂岩进行常规三轴压缩试验,分析试样变形、强度和破坏特征与温度、围压的关系。结果表明:经历400℃高温后的试样围压高于20 MPa时,试样峰值强度附近出现明显屈服平台,经历超过600℃以上高温的试样均具有明显峰值点,随温度升高试样的塑性减弱脆性增强;400℃以内高温对试样的变形参数影响不大,经历超过400℃以上高温的试样的弹性模量、变形模量和极限应变随围压增加单调增加呈正相关性;试样的弹性模量和变形模量随温度升高单调降低,而峰值应变随温度升高单调增加。高温后试样峰值强度随围压增大而单调增加,符合Coulomb强度准则,综合围压影响系数为6.541;800℃以内高温对试样黏聚力、内摩擦角影响不明显,经历1 000℃高温后的试样黏聚力急剧降低,内摩擦角稍有增加;800℃以内高温对粗砂岩具有强化作用,扣除围压影响后试样材料强度与温度呈正相关,超过800℃以上高温使试样强度有所弱化,试样材料强度与温度呈负相关性;高温后试样的试验破坏角和理论破坏角基本一致,高温对试样破坏角影响较小,试验破坏角随围压增加而单调减小,围压对试样破坏角的影响大于温度的影响。  相似文献   

5.
利用自主研发的真三轴岩爆试验系统,以200℃~700℃不同高温冷却后和常温25℃下的红色粗晶花岗岩作为岩样,进行岩爆弹射破坏过程模拟物理的试验。在借助高速摄像系统和声发射系统监测岩爆过程的基础上,分析了不同高温作用后岩样的岩爆弹射过程、破坏形态特征、峰值强度、声发射特性、碎块特征以及弹射动能的变化规律。研究结果表明:随着温度的升高,岩样从出现小颗粒弹射到整体弹射破坏的时间间隔逐渐减少;300℃为该类花岗岩高温后单面临空真三轴强度的阀值温度,小于等于300℃时,岩样的峰值强度变化不大,岩样脆性随温度的升高而增大,大于300℃时,岩样的峰值强度呈明显下降趋势,岩样的脆性随温度升高而降低;在岩样压密阶段,声发射撞击数随温度升高而增大,大于300℃时,岩爆发生前夕声发射撞击数显著下降的“平静期”持续时间随温度升高呈增大趋势;25℃~300℃温度范围内,岩爆弹射动能随温度升高明显增大,300℃~700℃高温后,岩爆弹射动能随温度升高显著减小。  相似文献   

6.
由于试验的复杂性,高温后混凝土在复杂应力状态下的动态力学性能研究一直较少,但在建筑物火灾和国防军事防护工程中,混凝土结构多处于多轴应力和冲击荷载的共同作用下。为研究静动组合荷载下混凝土高温后双轴动态力学性能,采用真三轴静、动力综合加载试验系统,使用真三轴试验机预先施加双轴轴压,再利用SHPB试验装置,分别对常温(25℃)和200、400、600、800℃高温后混凝土试件施加冲击动载,发现了双轴应力状态下混凝土在高温后的动态力学性能规律性。结果表明:温度变化是影响高温后混凝土双轴动态力学性能的主要因素,应变率变化是次要因素;当温度大于400℃时,应力应变关系曲线出现屈服平台,混凝土韧性比低温时有显著提高。200℃是高温后混凝土双轴动态抗压强度的转折温度,当温度继续升高时,双轴动态抗压强度明显下降。  相似文献   

7.
高温作用下花岗岩的声发射特征研究   总被引:2,自引:0,他引:2  
 通过MTS810材料测试系统及AE21C声发射检测仪对山东临沂花岗岩在20 ℃~800 ℃单轴压缩下的声发射特征进行试验研究,分别分析升温过程中花岗岩振铃计数率随时间的变化规律以及加载过程中花岗岩的声发射特征参量与应力–应变之间的关系。研究表明:升温及加载过程中,花岗岩声发射振铃计数率随着温度升高而增大,声发射活动也变得更频繁;其声发射参量在400 ℃~800 ℃高温后与高温下有较大差别,高温后的声发射参量明显低于高温下,岩样内部裂纹较少以致高温后花岗岩的强度等力学指标要优于高温下;各温度段高温下声发射振铃累计数都要高于高温后,尤其在800 ℃时,两者相差超过1倍;800 ℃前花岗岩岩样主要呈劈裂和剪切破坏为主的脆性破坏,未出现强烈的塑性破坏;高温使储存的能量显著增多并加速能量耗散,能量的耗散和弹性能的释放使岩石的强度减小,宏观裂纹增多并最终破坏。  相似文献   

8.
为了探究花岗岩高温高压损伤破裂细观机制,使用颗粒流程序(PFC)中的晶粒模型(GBM)单元开展高温作用后花岗岩常规三轴压缩模拟,分析应力-应变曲线、强度特征及破裂模式随围压及温度演化,研究其破裂过程,研究结果表明:GBM模型可以反映晶粒间的嵌锁效应,较好地模拟花岗岩劈裂、三轴压缩过程以及真实的花岗岩拉压比和强度随围压非线性特征,一定程度上克服了圆形颗粒嵌锁力不足的问题。不同围压下试样峰值强度随温度升高总体呈现先基本不变后迅速下降的趋势,450℃为阈值温度。莫尔–库仑准则回归得到的内摩擦角及黏聚力随温度总体呈先增高后降低趋势,且花岗岩强度参数的变化与其受力结构密切相关。当石英发生α-β相变后(573℃),花岗岩内产生大量穿晶裂纹及晶粒边界裂纹。单轴压缩下,试样的破裂特征受到热裂纹控制,峰后呈延性破坏;而高围压下,剪切带穿过晶粒,导致试样峰后产生脆性破坏。  相似文献   

9.
600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究   总被引:6,自引:1,他引:6  
 通过对600 ℃内高温状态花岗岩遇水冷却后的力学特性试验研究及花岗岩体遇水热破裂劣化机制的探讨,发现高温状态花岗岩遇水冷却过程中,由于岩体内温度急剧变化,岩体内产生热破裂或热冲击现象,岩体力学性能劣化,从而导致超声波速、单轴抗压强度、抗拉强度及弹性模量随温度逐渐减小。具体表现为:(1) 高温状态花岗岩遇水冷却后超声波速随着经历温度的升高呈负指数函数关系降低;(2) 花岗岩经过高温遇水冷却处理,峰值应力和峰值应变及其单轴抗压强度都受到很大影响;(3) 高温状态遇水冷却处理对花岗岩的抗拉强度影响明显,抗拉强度随温度的变化规律符合负指数函数关系;(4) 高温状态花岗岩遇水冷却后其弹性模量随温度的升高呈负对数规律减小。  相似文献   

10.
高温后花岗岩冲击破坏行为及波动特性研究   总被引:1,自引:0,他引:1  
 采用SRM–5N超声检测分析仪和高温分离式霍普森压杆(SHPB)系统装置,分别对不同高温后花岗岩的波动特性和动态力学特性进行试验研究,分析不同温度条件对花岗岩纵波波速、波形频谱的影响,研究高温后花岗岩的动态抗压强度、峰值应变以及冲击破碎形态的变化情况。试验升温等级设为25 ℃,100 ℃,200 ℃,400 ℃,600 ℃,800℃,1 000 ℃七个等级,升温速度为10 ℃/min。试验结果表明:(1) 随着温度的增高,花岗岩试样的热损伤总体上呈逐渐增大趋势。但是100 ℃之前热损伤有所降低,出现负的热损伤,随后热损伤不断增加,直到600 ℃以后热损伤增幅开始变缓。(2) 随着温度的升高,试样的动态抗压强度总体减小,峰值应变总体增大;但是在110 ℃左右,抗压强度有所增强,峰值应变有所减小;600 ℃之后抗压强度和峰值应变分别显著减小和增大。(3) 推断110 ℃左右为花岗岩一个阈值温度,在这个温度之前,温度的对花岗岩产生负损伤,花岗岩强度增强;推断600 ℃~800 ℃范围内存在为花岗岩另一个阈值温度,超过这个温度花岗岩的力学性能发生显著变化。该方法和成果可为岩体工程施工、防火设计以及火灾后评估修复提供一定参考价值。  相似文献   

11.
围压与温度共同作用下盐岩的SHPB实验及数值分析   总被引:2,自引:1,他引:1  
 在自主研制的可进行围压和温度共同加载的分离式Hopkinson压杆(SHPB)实验装置TSCPT-SHPB基础上,对盐岩在5~25 MPa围压作用下的轴向动力性能以及盐岩在40 ℃~80 ℃,0.0~0.5 MPa围压下进行实验研究,分析围压和应变率对盐岩在围压作用下轴向抗压强度动力增长系数(DIF)的影响,以及温度和围压对盐岩动态力学性能的影响。结果表明:在动态作用下,围压对盐岩延性的提高有显著影响;盐岩属率敏感性和温度敏感性材料,其峰值强度随应变率的提高而提高,在低围压下的提高幅度比高围压下显著,并得到实验范围内盐岩材料动力增长系数(DIF)与围压和应变率关系的表达式;在高应变率(400 s-1)条件下,盐岩的动态峰值强度随温度的升高而降低,并依据实验数据,拟合得到峰值强度在各实验温度下随围压变化的计算公式。为考虑应变软化效应,对ABAQUS有限元软件中的Drucker-Prager模型进行改进,并基于单向动态围压下的实验数据拟合的计算参数,对盐岩TSCP-SHPB实验进行数值模拟,模拟结果与实验结果吻合较好。  相似文献   

12.
低渗透岩石三轴压缩过程中的渗透性研究   总被引:5,自引:2,他引:3  
 采用岩石全自动三轴伺服仪,对低渗透花岗岩进行考虑渗透水压作用的三轴渗流–应力耦合试验。基于试验结果,研究花岗岩在不同围压和渗压下的渗透特性,分析岩石应力、应变变化过程中渗透率随围压、渗压和体积应变的变化规律。试验结果表明:岩石的应力–应变关系具有典型的脆性特征,渗压相同围压不同时,岩石强度随围压增大而增加;围压相同渗压不同时,较低的渗压对低渗透岩石强度影响不明显。岩样体积应变经过压密和扩展2个阶段,最大体积压缩应变随着围压的增加而增加,而岩样渗透率最小值并未出现在最大压密处,而是出现在体积应变拐点前,约在最大压密体积应变的95%处,并给出渗透率与体积应变的关系式。  相似文献   

13.
吴福宝 《岩土工程学报》2019,41(Z1):117-120
云母石英片岩的矿物成分和微观结构决定了其各向异性特征,通过铸体磨片和电镜扫描试验,获得了云母石英片岩的矿物组成和微观结构特征;通过三轴剪切试验,获得了微风化岩样片理面力学参数;通过强风化和中风化岩块的点荷载试验,结合强风化岩样的片理面剪切试验,得出了强风化和中风化岩样的片理面力学参数;按照材料力学理论,采用片理面力学参数计算得出岩样的最小单轴抗压强度,进而计算得出岩样的各向异性系数;以垂直片理面的抗压强度作为计算依据,计算得出岩样的风化系数,进而总结出岩样的各向异性系数与风化系数的关系,揭示了风化过程中片理面力学特征的变化规律。  相似文献   

14.
 首先采用声波纵、横波测量方法,进行岩样筛选。然后根据高压油气藏地质构造特征,设计模拟高压油气藏内部孔隙压力变化条件下岩石力学特性测试的方案。在GCTS–1000型三轴压缩试验机上进行高温高压三轴岩石力学测试,结果表明:随着砂岩内部孔隙压力增加,外部围压保持不变的条件下,岩石的强度与围压不呈单调上升的变化趋势,而是随着孔隙压力的增加,净围压减小,岩石强度先随净围压减小而逐渐减小,之后则表现出反常的增大现象。在地压梯度为2.20 MPa/(100 m)时,产生最低强度值。随着地压梯度的增大,岩石强度值反而升高,形成一个V形曲线。砂岩的弹性模量为一波浪形曲线,上下波动范围最大差值为2 909 MPa。泊松比的值从低向高;在地压梯度大于2.00 MPa/(100 m)时,泊松比接近0.5。重复试验揭示了岩石三轴强度特性的这一特殊现象。该结果对于高压油气藏、水泥环和套管系统的真三维套管变形与损坏的模拟有着重要的参考价值,而且是必不可少的基础数据。  相似文献   

15.
以高放废物重点预选场址甘肃北山花岗岩为研究对象,开展了不同温度和不同加热速率高温损伤后岩石压缩全过程渗透率试验。研究发现:(1)饱水率、波速、弹模、峰值强度等物理力学性质及渗透率突变温度阈值均在500℃~600℃之间;低于500℃处理后试件的初始渗透率无明显变化,600℃处理后,晶内裂纹的大量出现使裂纹连成网络,岩石的初始渗透率急剧增长,增长幅度达2~3个量级。(2)低于5℃/min,岩石的损伤主要由造岩矿物颗粒热膨胀系数和弹性模量的不同导致在颗粒间形成热应力造成的;高于5℃/min,温度梯度导致的热应力将诱发裂纹。(3)电镜扫描显微图像显示100℃~573℃处理后裂纹主要集中在晶粒边界,高于573℃处理后长石和石英晶体内相继出现穿晶裂纹,晶内破裂均贯通整个晶粒,与周围裂隙网络连接。(4)热处理后试件渗透率出现2种不同的渗透类型:600℃以下处理后试件在压缩全过程随应力增加渗透率分为下降段、水平段、稳定增长段和急剧上升段;600℃以上高温处理后,渗透率在压缩全过程持续降低。(5)弹性阶段前渗透率与裂隙体积应变呈现良好的线性关系,随裂隙体积的减小,渗透率降低。  相似文献   

16.
不同成岩作用程度砂岩物理力学性质三轴试验研究   总被引:16,自引:1,他引:16  
采用三轴岩石力学测试系统分析了不同侧压条件下砂岩岩石的孔渗性和力学特性及变形破坏机制 ,建立了砂岩岩石物理力学性质与侧压之间的相关关系。研究表明 ,砂岩的孔隙度和渗透率均随侧压的增大而减小 ,且服从对数函数变化规律。砂岩的刚度和强度均随侧压的增大而增大 ,具有明显的压硬性。岩石破坏后的残余强度随着侧压的增加下降梯度减小 ,而残余强度值相对提高。不同侧压下岩石的破坏机制表现出随着侧压的增大 ,成岩作用程度较弱的岩石应力 -应变曲线由应变软化性态向近似应变硬化性态过渡 ;而成岩作用程度相对较强的岩石在单轴压缩条件下表现为脆性张破坏 ,随着侧压的增加 ,便进入剪切破坏 ,岩石应力 -应变曲线表现出明显的脆性和应变软化特性  相似文献   

17.
 采用自主研制的20 MN伺服控制高温高压岩体三轴试验机,对f 200 mm×400mm的花岗岩体内含f 40 mm的钻孔在600 ℃以内及6 000 m埋深静水压力下钻孔围岩的热弹性变形进行深入的试验研究。根据热弹性变形试验结果反演计算出高温高压下钻孔围岩的热物理及力学特性参数,并对钻孔围岩的热物理及力学参数进行认真细致的分析。研究结果表明:(1) 高温不同埋深应力下钻孔围岩的热变形可分为3个阶段:低温热变形微弱阶段,中高温热变形快速增长阶段,高温热变形平稳阶段,且埋深(即应力大小)对于钻孔围岩的热变形具有明显的影响;(2) 高温高压下含有钻孔的花岗岩体以剪切方式破坏,花岗岩体在经历500 ℃~600 ℃的高温仍呈现出脆性特征,岩体破坏的条件为6 000 m埋深静水压力,600 ℃左右;(3) 高温下钻孔围岩的弹性模量随温度的升高呈负指数规律减小;(4) 高温下钻孔围岩的泊松比随温度的升高总体呈增大的趋势;(5) 高温不同埋深应力下钻孔围岩的热膨胀系数不同,埋深对钻孔围岩的热膨胀系数具有很大影响。研究结果可为高温岩体地热开发深钻施工及钻井围岩稳定性维护提供理论依据与技术储备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号