首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以提高L-苹果酸的产量为目标,采用一次交换两次同源重组的方法,利用反向筛选标记,在敲除了丙酮酸醌氧化还原酶编码基因(pqo),丙酮酸脱氢酶编码基因(pdh)和乳酸脱氢酶编码基因(lldh)的C.glutamicumΔpqoΔpdhΔlldh(C.glutamicumΔPPL)基础上,无痕敲除了L-苹果酸积累支流代谢途径的2个关键酶基因:苹果酸醌氧化还原酶编码基因(mqo)和苹果酸酶编码基因(male),同时敲入了苹果酸分泌转运蛋白基因(transb),获得了产L-苹果酸的工程菌株;采用高效液相色谱法检测了工程菌株C.glutamicumΔPPLΔmqo::transbΔmale的发酵产物。实验结果表明:C.glutamicum ATCC 13032发酵后不积累L-苹果酸,而工程菌C.glutamicumΔPPLΔmqo::transbΔmale发酵48 h,积累了12.8 g/L的L-苹果酸,工程菌的糖酸转化率为33.18%,为利用C.glutamicum ATCC 13032发酵生产L-苹果酸提供了基础遗传资源。  相似文献   

2.
降低谷氨酸的积累可提高L-色氨酸产量及糖酸转化率。敲除Escherichia coli TRTH中的谷氨酸脱氢酶及谷氨酸合成酶编码基因gdh A、glt B,构建TRTHA(TRTH,Δgdh A)、TRTHB(TRTH,Δglt B),考察gdh A、glt B缺失对L-色氨酸发酵的影响。结果表明,gdh A及glt B缺失能有效降低谷氨酸的积累,但会降低细胞生长及色氨酸合成;培养基中谷氨酸的添加可恢复TRTHA及TRTHB的生长及色氨酸合成能力。在含1 g/L谷氨酸培养基中,利用TRTHB发酵L-色氨酸,L-色氨酸产量(41.23 g/L)及糖酸转化率(15.45%)最高,较TRTH分别提高了10.92%和7.89%;谷氨酸生成量(5.72 g/L)及乙酸积累量(1.73 g/L)分别较TRTH降低了25.23%及提高了10.19%。TRTH和TRTHB代谢流分析结果表明,glt B缺失会降低谷氨酸合成代谢流并提高乙酸合成代谢流;TRTHB的色氨酸合成代谢流(11.4%)较TRTH提高了40.74%。  相似文献   

3.
在谷氨酸棒状杆菌(Corynebacterium glutamicum) SNK118中表达NADP~+依赖型的3-磷酸甘油醛脱氢酶编码基因,提高胞内NADPH水平,以提高L-精氨酸(L-Arginine)和L-鸟氨酸(L-Ornithine)发酵产量。通过NCBI数据库检索,选取了3个不同来源的3-磷酸甘油醛脱氢酶编码基因。经测定酶活力,最终选择糖丁基梭菌(Clostridium saccharobutylicum) DSM 13864来源的NADP~+依赖型的3-磷酸甘油醛脱氢酶基因(Csgap C)。构建了产L-精氨酸的重组菌SNK118/p XMJ19-Csgap C,当摇瓶发酵70 h时产L-精氨酸11. 55 g/L,糖酸转化率0. 13 g/g,与对照菌SNK118/p XMJ19相比,精氨酸产量和糖酸转化率分别提高了26%和10. 2%。在L-鸟氨酸生产菌株SNK118Δarg FΔargR中重组表达Csgap C,重组菌SNK118Δarg FΔargR/p XMJ19-Csgap C摇瓶发酵70 h产L-鸟氨酸27. 76 g/L,糖酸转化率0. 274 g/g,与对照菌SNK118Δarg FΔargR/p XMJ19相比,L-鸟氨酸产量和糖酸转化率分别提高了20. 1%和15. 6%。结果表明,异源表达Csgap C有助于提高谷氨酸棒杆菌发酵生产L-精氨酸和L-鸟氨酸的水平。  相似文献   

4.
以产L-精氨酸诱变菌株谷氨酸棒状杆菌(Corynebacterium glutamicum)AJC为出发菌株,采用基因组编辑技术对其进行改造。 首先,敲除阻遏蛋白ArgR和FarR,解除反馈阻遏作用;然后,敲除乳酸脱氢酶编码基因ldh和整合鸟氨酸乙酰转移酶编码基因argJ,阻 断乳酸合成途径和增加前体物;最后,敲除谷氨酸分泌蛋白编码基因NCgl1221和整合乙酰谷氨酸激酶基因argB,减弱L-谷氨酸的胞 外分泌,筛选一株L-精氨酸高产菌株。 结果表明,获得一株高产L-精氨酸菌株AJC-4(C. glutamicum AJCΔargRΔfarRΔldh::PtufargJ ΔNCgl1221::PsodargB),该菌株在5 L发酵罐中发酵64 h后,L-精氨酸产量和糖酸转化率分别为78.0 g/L和0.38 g/g,较出发菌株AJC分 别提高21.9%、18.8%;副产物乳酸和L-谷氨酸积累量分别为0.11g/L、0.16 g/L,较出发菌株AJC分别降低96.8%、96.1%。  相似文献   

5.
通过PCR获得黄色短杆菌ATCC14067基因组上编码L-亮氨酸合成途径中关键酶的基因.连接大肠杆菌-谷氨酸棒状杆菌穿梭表达质粒pDXW-8构建多种重组质粒,分别转化模式菌株C.glutamicum ATCC13032考察对其发酵生产L-亮氨酸的影响.经摇瓶发酵实验显示:C.glutamicum ATCC13032发酵液中没有L-亮氨酸的积累而基因工程菌ATCC13032/pDXW-8-leuA-ilvBNC中L-亮氨酸的产量达4.75g/L.  相似文献   

6.
在谷氨酸棒杆菌中,L-丝氨酸由糖酵解中间产物3-磷酸甘油酸经过3步反应生成,这个过程产生2个NADH,而L-丝氨酸的合成过程并不涉及NAD~+的生成,多余的NADH是否会影响菌株的生长及产L-丝氨酸?该研究通过外源添加NAD~+的前体物质烟酸,内源表达NADH氧化酶编码基因nox A,考察调控NADH/NAD~+对Corynbacterium glutamicum SYPS-062 33aΔSSAAI生长和产L-丝氨酸的影响。结果表明,添加不同浓度烟酸,菌株的L-丝氨酸产量、生物量及糖耗较未添加时略有提高。而通过加强表达NADH氧化酶编码基因nox A,构建重组菌Corynbacterium glutamicum SYPS-062 33aΔSSAAI-nox A,重组菌中NADH氧化酶比酶活是出发菌的11.6倍,L-丝氨酸产量达到28.93 g/L,较出发菌提高9.0%,糖酸转化率达到0.29 g/g蔗糖,较出发菌提高7.4%,OD562最大值为51.38,较出发菌提高6.6%,说明NADH氧化酶的过表达能够促进重组菌株的生长及碳源利用,提高菌株的L-丝氨酸产量。  相似文献   

7.
L-亮氨酸高产菌TGL8207的定向选育及其发酵过程研究   总被引:1,自引:1,他引:0  
以谷氨酸棒杆菌TG95为出发菌株,通过原生质体紫外诱变、原生质体融合和硫酸二乙酯诱变,定向选育L-亮氨酸产生菌TGL8207.该菌株在未优化条件下摇瓶发酵72 h,产L-亮氨酸27.2 g/L,并且菌株的遗传标记和产酸能力十分稳定.研究了温度、pH和溶氧对菌株TGL8207积累L-亮氨酸的影响.采用10 L罐补料分批发酵64h,L-亮氨酸产量达44.5 g/L,糖酸转化率达22.8%.  相似文献   

8.
L-异亮氨酸是L-亮氨酸发酵的主要副产物,L-异亮氨酸的积累对L-亮氨酸的发酵及提取均产生不利影响。采用基因重组技术敲除L-亮氨酸产生菌-谷氨酸棒杆菌(Corynebacterium glutamicum)TGL8207的苏氨酸脱氨酶基因ilvA,构建了ilvA缺失株谷氨酸棒杆菌(C.glutamicum)TGL8207 ilvA。发酵结果显示:ilvA基因缺失对TGL8207 ilvA的生长影响很小。与供试菌比较,TGL8207 ilvA的L-亮氨酸产量和糖酸转化率分别提高了8.4%和1.9%。  相似文献   

9.
生物素作为微生物的生长因子,对生长速率、细胞膜通透性、代谢产物的生成等方面具有重要作用。为提高黄色短杆菌产L-亮氨酸产量,降低副产物生成,在30 L发酵罐水平研究了在培养基中添加20、50、80、120μg/L四种不同质量浓度生物素,对黄色短杆菌产L-亮氨酸的影响。结果表明:培养基中添加50μg/L生物素,黄色短杆菌发酵44 h,L-亮氨酸的产量最高,达到60 g/L,糖酸转化率为22%,副产物L-丙氨酸的质量浓度为8 g/L。在最适生物素浓度下,发酵36 h后,采用膜偶联间歇透析发酵工艺,发酵周期延长至56 h,L-亮氨酸的糖酸转化率为25%,较普通发酵工艺约提高13. 6%,副产物L-丙氨酸的浓度降低约71. 3%,L-亮氨酸的总产量提高了16. 7%。研究结果对提高糖利用率、降低副产物、提高生产效率等方面具有重要意义。  相似文献   

10.
L-苏氨酸是人类必需氨基酸,在医药、食品、饲料领域有广泛的应用。在L-苏氨酸发酵生产过程中,乙醛酸循环起到部分回补途径的功能。本实验利用Red重组技术,以L-苏氨酸生产菌Escherichia coli THRD为出发菌株,构建了icl R基因缺失菌株THRDΔicl R以及不同强度启动子替换ace BAK启动子的菌株THRD P1和THRD P2。通过实时荧光定量PCR检测表明,苹果酸合酶基因(ace B)的表达量分别是原菌的1.89倍、2.11倍以及2.96倍。摇瓶发酵结果显示,THRDΔicl R的L-苏氨酸产量及糖酸转化率分别为42.60±1.23 g/L和32.77 g/g,较原菌THRD(35.32±1.07 g/L和27.17 g/g)分别提高20.61%和20.70%。THRD P1 L-苏氨酸产量及糖酸转化率分别为36.50±1.42 g/L和28.08 g/g,较原菌THRD(35.32±1.07 g/L和27.17 g/g)分别提高3.34%和3.39%。而THRD P2 8 h后菌体生长停滞,L-苏氨酸产量及糖酸转化率分别为8.31±1.31 g/L和20.78 g/g,较原菌THRD(35.32±1.07 g/L和27.17 g/g)分别降低了76.47%和23.52%。综上所述,适当增强乙醛酸循环有利于L-苏氨酸的积累,而过强的乙醛酸循环影响菌体的正常代谢。  相似文献   

11.
在谷氨酸棒杆菌(Corynebacterium glutamicum)中,由3-磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)催化的反应是糖酵解途径的限速步骤,该反应还直接影响了L-丝氨酸的前体3-磷酸甘油酸的合成。研究首先比较了产L-丝氨酸的野生型菌株C.glutamicum SYPS-062与模式菌株C.glutamicum ATCC14067的GAPDH酶活力,发现SYPS-062的GAPDH酶活力比ATCC14067高了55.8%。进一步采用在C.glutamicum33a△SS基因组上增加gap A拷贝数的方法加强表达GAPDH,构建了重组菌C.glutamicum33a△SS-2gap A。重组菌GAPDH转录水平和酶活力分别提高119%和53%,最大比生长速率提高10.6%,总糖耗速率提高4.4%,L-丝氨酸产量提高17.4%,糖酸转化率提高12.2%,生产强度提高17.4%。结果表明,加强表达GAPDH能够提高重组菌的生长和糖耗速率,并能够提高L-丝氨酸的产量、糖酸转化率和生产强度。  相似文献   

12.
为了获得高产反式-4-羟脯氨酸的菌株,基于大肠杆菌的代谢网络模型的指导,以大肠杆菌E.coli BL21(DE3)Δput A为出发菌株,通过基因敲除技术成功敲除arg B基因,阻断L-脯氨酸合成的前体物L-谷氨酸的分支代谢途径,增加L-脯氨酸合成的代谢流,构建了精氨酸缺陷型菌株E.coli BL21(DE3)Δput AΔarg B。同时转入表达质粒p UC19-pro B2A-Ptrp2-hyp,该质粒含有突变基因pro B2,该突变基因所编码的谷氨酸激酶受L-脯氨酸的反馈抑制作用显著降低。摇瓶发酵结果表明,在外源添加600 mg/L L-精氨酸时,该重组菌株产反式-4-羟脯氨酸的量达到312.67 mg/L,较菌株E.coli BL21(DE3)Δput A/p UC19-pro B2A-Ptrp2-hyp提高了25.29%。  相似文献   

13.
α-酮戊二酸(α-ketoglutarate,α-KG)在生命活动中具有重要的作用,被广泛应用于食品、医药等领域。以α-KG生产菌谷氨酸棒状杆菌GKGD为出发菌株,敲除其异柠檬酸裂解酶编码基因ace A以增加异柠檬酸供应,获得GKGD-1,摇瓶发酵条件下其α-KG产量和转化率分别提高14.72%和9.76%;敲除谷氨酸合酶编码基因gogat以降低L-谷氨酸生成量,获得GKGD-2,其α-KG产量和转化率分别提高7.39%和5.43%,L-谷氨酸生成量降低52.87%;过表达柠檬酸合酶编码基因glt A以进一步增加前体物供应,获得GKGD-3,其α-KG产量提高35.9%;于7.5 L发酵罐经30 h发酵,GKGD-3α-KG产量达49.5 g/L,较出发菌株提高36.4%,L-谷氨酸生成量降低50%。敲除ace A和gogat并过表达glt A可显著提高α-KG产量并降低L-谷氨酸生成量。  相似文献   

14.
葡萄糖流加方式对黄色短杆菌生产L-亮氨酸的影响   总被引:1,自引:0,他引:1  
利用30 L发酵罐,研究了黄色短杆菌TK0303生产L-亮氨酸的发酵工艺。考察了初始葡萄糖浓度和发酵过程中3种补料策略(分批间歇流加补料、恒葡萄糖浓度流加补料和DO-在线识别流加补料)对菌体生物量、L-亮氨酸产量、副产物含量及糖酸转化率的影响。最终确定:分批补料发酵的初始葡萄糖浓度为60 g/L,葡萄糖补加采用DO-在线识别流加方式。根据溶氧响应信号的特征反馈控制葡萄糖的流加速率,可实现葡萄糖的限制培养,有效减少了发酵副产物的含量,菌体生物量和L-亮氨酸产量得到显著提高,分别为21.8 g/L和41.3 g/L,且糖酸转化率高达22.4%。  相似文献   

15.
目的:为了探究L-酪氨酸发酵生产最佳的诱导方式。方法:首先进行单因素实验确定最佳添加量,然后选择3种不同的木糖流加方式进行5L发酵罐分批补料发酵实验,探究其对大肠杆菌生物量、L-酪氨酸含量、糖酸转化率和代谢副产物的影响。结果:研究发现木糖添加量为30g/L时,采用木糖随流加葡萄糖一起流加的方式,在30h发酵结束时L-酪氨酸含量最高为33.5g/L,生物量最大OD600为76,糖酸转化率最高为17%,乙酸浓度为3.2g/L。结论:木糖添加量为30g/L时,随流加葡萄糖一起流加木糖的方式是生产L-酪氨酸的一种有效诱导方式,为L-酪氨酸高效工业化生产提供了重要参考。  相似文献   

16.
色氨酸是人和动物体内必须氨基酸,在食品、饲料及医药工业中具有广泛应用价值.以色氨酸生产菌株Escherichia coli TRTH为出发菌株,在培养基中添加精氨酸,以降低代谢副产物的积累量,提高L-色氨酸的产量.在30 L发酵罐上考察了精氨酸对L-色氨酸发酵的影响,结果表明:添加0.2 g/L的精氨酸时,菌体生物量、L-色氨酸产量和糖酸转化率分别为41.5 g/L,34.5 g/L和18.0%,较未添加时分别提高了5.46%,5.83%和2.86%,且乙酸积累量较未添加时降低了10.99%.  相似文献   

17.
以黄色短杆菌MH-1000为出发菌株,使用PCR技术克隆ilvBN与ilvC基因,对ilvBN进行定点突变,获得解除L-缬氨酸对乙酰羟酸合酶反馈抑制突变型基因ilvBN′.对基因ilvC进行点突变,获得乙酰羟酸变位酶突变基因ilvC′.通过重叠延伸PCR方法,将基因片段ilvBN′和ilvC′拼接为ilvBN′C′,进而连接至穿梭载体pXMJ19获得重组质粒pXMJ19-ilvBN′C′.该重组质粒转化至出发菌株获得工程菌株MH-1032.50L分批补料发酵结果显示:MH-1000发酵72hL-缬氨酸质量浓度为35.2g/L,MH-1032发酵72 h L-缬氨酸质量浓度为38.4 g/L,增长9.1%,糖酸转化率从21.7%提高到25.8%.  相似文献   

18.
葡萄糖的有效利用是提高大肠杆菌合成L-苏氨酸能力的关键,作者通过优化葡萄糖转运来提高大肠杆菌L-苏氨酸合成能力。利用CRISPR基因编辑技术在大肠杆菌TWF001中分别敲除了PTS系统关键基因ptsH和ptsG,并在30 g/L葡萄糖质量浓度下进行了摇瓶发酵。与对照菌株TWF001相比,TWF001ΔptsH和TWF001ΔptsG合成L-苏氨酸能力均有明显改善;TWF001ΔptsH L-苏氨酸产量提升38.02%。在TWF001ΔptsH基因组上用trc启动子过表达galP基因,构建了TWF001ΔptsH,Ptrc::PgalP。对3株突变菌在40、50、60 g/L葡萄糖质量浓度下进行了摇瓶发酵;36 h后TWF001ΔptsH,Ptrc::PgalP在40 g/L葡萄糖质量浓度时,L-苏氨酸产量达到26.16 g/L,糖酸转化率为0.65 g/g,L-苏氨酸产量提升幅度达42.12%。研究结果说明优化葡萄糖转运可以有效提高大肠杆菌L-苏氨酸合成能力。  相似文献   

19.
为了研究胞质还原路径对酿酒酵母积累L-苹果酸的影响,通过在酿酒酵母中过量表达源于黄曲霉的丙酮酸羧化酶(Afpyc)、苹果酸脱氢酶(Afmdh)及C4-二羧酸转运蛋白(Afmae),成功构建了L-苹果酸合成的胞质还原路径。结果表明:(1)当低水平表达Afpyc时,其丙酮酸浓度降低了42%,但不能积累L-苹果酸;(2)当共表达Afpyc和Afmdh时,菌株W005积累了1.93 g/L的L-苹果酸,与对照菌株W004相比细胞干重提高了350%,丙酮酸降低了65.9%;(3)当共表达Afpyc、Afmdh和Afmae时,菌株W006的L-苹果酸产量提高了21.2%,达到2.34 g/L;4)通过提高接种量至初始OD_(600)=2,L-苹果酸的产量提高到3.28 g/L。通过在酿酒酵母中过量表达黄曲霉胞质还原路径的关键基因,使得工程菌能够积累L-苹果酸,为目标产物的高效积累提供了一种可借鉴的思路。  相似文献   

20.
L-异亮氨酸是人和动物八种必需氨基酸之一,在生命活动中具有重要地位。乙酰羟基酸合成酶(acetohydroxyacid synthase,AHAS)是L-异亮氨酸合成途径的关键酶(由ilvBN编码),α-酮基丁酸是L-异亮氨酸合成的重要前体。因此强化ilvBN的表达以及增加α-酮基丁酸的供应理论上可提高L-异亮氨酸的合成。cim A编码的甲基苹果酸合成酶可以催化丙酮酸和乙酰-Co A快速生成L-异亮氨酸前体α-酮基丁酸,从而增强主代谢流通量。本文采用基因重组手段将L-异亮氨酸生产菌株Corynebacterium glutamicum YILW ilvBNC操纵子中的启动子替换为强启动子Ptac获得C.glutamicum YILWPtac。摇瓶发酵结果显示该菌株L-异亮氨酸产量和转化率分别较出发菌株提高了14.8%和18.6%。在此基础上过表达cimA基因,获得C.glutamicum YILWPtacp XMJ19cim A,其L-异亮氨酸酸产量和糖酸转化率分别较出发菌株提高了14.5%和42.4%。本研究可为氨基酸生产菌株的选育提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号