首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本研究通过流变相反应-热解法制备了碳包覆钒酸锰锂离子电池负极材料,通过XRD、TEM和电化学测试对材料进行了表征.所制备的材料微观组织呈不规则的短圆柱形和球形,其直径分布在30~50 nm之间,短圆柱形颗粒长度在200 nm左右.在充放电电压为3.0 V到0.02 V范围内,当充放电电流为0.1 A/g时,钒酸锰负极材料首次可逆充电容量为876 mAh/g,经过100次充放电循环后,可逆充电容量为843 mAh/g;以2.0 A/g的大电流充放电时,可逆充电容量仍然保持在334 mAh/g左右,表现出较优秀的大电流充放电能力.  相似文献   

2.
通过球磨的方法制备了锂离子电池铌锡锑三元合金负极材料。用XRD、TEM和电化学测试对材料进行了表征,用非原位XRD测试研究了材料的反应机理。所制备的铌锡锑三元合金材料颗粒粒径大小分布在2~5μm之间。在充放电电压为1.5V到0V范围内,初始可逆充电容量为568mAh/g,经过20周的循环后,充电容量保持为初始容量的59.2%。由于铌锡锑材料中非活性物质Nb的作用,在相同条件下,与锡锑二元合金负极材料相比,其贮锂容量和循环性能都有明显的提高。  相似文献   

3.
通过高温裂解蔗糖混合纳米硅和碳纳米管,得到硅/无定形碳/碳纳米管复合材料.实验结果表明,复合材料的首次放电容量高达1315.4mAh/g,首次充放电效率为72.4%,经过20次充放电循环后可逆容量仍高达830.5mAh/g.具有良好弹性的碳纳米管组成的网状结构使复合材料能保持较好的形貌,而碳纳米管优良的导电性可以使更多...  相似文献   

4.
刘冬如  黄可龙  唐爱东  邹啸天 《功能材料》2005,36(5):687-688,691
利用高温固相分段加热法合成锂锰氧正极材料LiMn0.9Mo0.1O2,并对其进行了常温充放电、循环伏安、交流阻抗、电镜扫描等电化学性能测试。在2.0~4.3V电压范围内,其首次充电容量为160mAh/g,放电容量为158mAh/g;经10次充放电循环后,其充电容量为156mAh/g,放电容量为155mAh/g(对极为锂片);经SEM检测,该正极材料主要为正交型锂锰氧化物。  相似文献   

5.
通过液相法制备了Li1.26Fe0.09Ni0.36Mn0.36O2(LFNMO)正极材料。X射线衍射测试结果表明,该新型正极材料具有良好的α-NaFeO2层状结构。其电化学特征是:在1.7~1.1V之间存在可逆的低电压放电平台;在1.1~4.8V电压内,放电到1.1V时LFNMO的结构发生变化,再次充电后结构恢复,充放电过程中LFNMO的结构变化稳定可逆。所制备的LFNMO正极材料,在0.1C倍率,2.0~4.8V内,首次放电比容量175.4mAh/g,60次循环后容量保持率为91.1%。  相似文献   

6.
通过固相自引发基团置换反应,流变相法和固相自引发基团置换-流变相法3种方法成功制备出LiNi1/3Co1/3Mn1/3O2材料。XRD、SEM和电化学测试表明,固-流法制备的样品具有最稳定的二维层状结构和最小的阳离子混排度及最佳的微观形貌和电化学性能。在2.8~4.3V区间内0.2、0.5、1和2C下的放电比容量分别为185.9、169.9、157.5和134.7mAh/g。0.5C下的循环测试表明,20次循环后电极的放电比容量为143.9mAh/g,容量保持率为84.7%。提高充电截止电压到4.6V,能极大地提高材料的充放电比容量,首次放电比容量为197mAh/g,同时,不可逆容量增大。  相似文献   

7.
通过固相自引发基团置换反应——流变相法制备出层状LiNi1/3Co1/3Mn1/3O2正极材料,研究了不同烧结温度对材料的结构特性、微观形貌以及电化学性能的影响。结果表明,850℃煅烧20h的样品具有最佳的二维层状结构和阳离子有序度,产物颗粒呈球形,分布均匀,平均粒径约250nm。在2.8~4.3V区间,以80mA/g充放电,首次放电比容量为169mAh/g,30次循环后容量保持率为82.6%。将充电截止电压提高至4.4V,材料的前几次放电容量明显提高,以32mA/g充放电,10次循环后的放电比容量为174mAh/g,其后容量衰减加快,循环稳定性变差。  相似文献   

8.
锂硫电池因能量密度高、环境友好,被认为是最有希望的新一代能源储存装置。但是,多硫化物穿梭效应和体积膨胀等问题是锂硫电池目前所面临的巨大挑战。通过化学合成法制备了不同形貌且具有稳定规则结构的纳米硫,为电池在充放电过程中提供更多的活性位点,有效减少正极活性物质的损失,使电池的电化学性能得到提升。结果表明,花瓣状纳米硫材料在0.1C的电流密度下有740.72 mAh/g的初始容量,100次循环后容量保持在362.07 mAh/g;球状纳米硫材料在0.1C的电流密度下初始容量为825.30 mAh/g,100次循环后容量保持在418.06 mAh/g,每圈的容量衰减率仅为0.493%。  相似文献   

9.
以TiO_2粉末和NaOH为原料,在机械外力场作用下,采用水热法制备TiO_2纳米线。随后将得到的TiO_2纳米线与六水合硝酸钴(Co(NO_3)_2·6H_2O)和尿素(Urea)共同水热反应制备TiO_2/Co_3O_4纳米结构材料。分别利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池充放电测试仪和电化学工作站等,对材料的相组成、微观形貌、锂电性能和阻抗性能进行测试。结果表明,TiO_2/Co_3O_4纳米复合材料为鸟巢状结构,其在33.5mA/g电流密度下恒电流充放电的首次放电容量为777mAh/g,充电容量为759mAh/g,100次循环后的可逆容量仍保持在663mAh/g,具有良好的循环稳定性和电化学特性。  相似文献   

10.
采用高温固相法制备CrNbO_4,并首次研究其作为锂离子电池负极材料的电化学性能。使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)测试和电化学交流阻抗测试(EIS)对材料的结构、形貌和电化学性能进行表征。样品CrNbO_4在0.001~3.0V电压区间,电流密度为16 mA/g时,充放电50次后放电容量可以保持在63.5mAh/g。通过球磨,CrNbO_4的首次放/充电容量由212.9/100.9 mAh/g提高到572.3/343.5mAh/g,同时电流密度提高10倍,充放电50次后改性样品的放电容量仍可维持81.3mAh/g,有效提高了电化学性能。  相似文献   

11.
The effect of Ti incorporation on lithium intercalation capacity of V2O5 thin films prepared by spin coating using metalorganic (MO) and inorganic sol-gel (SG) precursors on indium tin oxide coated glass substrates have been investigated. Earlier studies show that V2O5-TiO2 oxide system has a higher cyclic stability than V2O5. However, there is controversy concerning the capacity of these mixed phases. We observe that upon incorporation of 5% Ti in MO films the lithium intercalation capacity decreases from 47 mC/cm2 to 27 mC/cm2, while for the SG films, the capacity increases from 14 mC/cm2 to 27 mC/cm2. We attribute this difference in the lithium intercalation capacity of the 5% Ti doped V2O5 films prepared by MO and SG precursors to the variation in the nonstoichiometry and the particle size. We find that it is essential to have a critical V:O ratio to achieve high intercalation capacity. Any deviations from this critical V:O ratio leads to a decrease in capacity and films having similar nonstoichiometry have similar values of intercalation capacity and diffusion coefficient.  相似文献   

12.
Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important,owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles.Here,we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique.During prolonged cycling at high-voltage,the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte,as confirmed by electrochemical impedance spectroscopy and Raman characterizations,but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density.As a result,a capacity value close to 200 mA·h·g-1 was achieved for the LiCoO2 electrodes with commercial level loading densities,cycled at the cut-off potential of 4.6 V vs.Li+/Li for 50 stable cycles;this represents a 40% capacity gain,compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs.Li+/Li.  相似文献   

13.
The thin film Sn-Co-Ni alloy electrodes were prepared by electroplating on copper foil as current collector. The structure of the electroplated porous thin film Sn-Co-Ni alloy electrode is investigated by XRD, FE-SEM, and EDAX. The electrochemical performance is analyzed by using a battery cycler at the current rate of 0.1 C to cut-off potentials of 0.01 and 1.20 V vs. Li/Li+ and also cyclic voltammeter. Experimental results illustrate that the initial discharge capacity of the Sn-Co-Ni alloy anode is 717 mAh g−1. The discharge capacity has been in increasing order between 2nd and 10th cycling and then maintained the stable capacity. It is found that the charge and discharge capacity of thin film Sn-Co-Ni alloy electrode obtained an average reversibility behavior and the better cycle stability.  相似文献   

14.
In this study, a lithium-rich layered 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 nanotube cathode synthesized by novel electrospinning is reported, and the effects of temperature on the electrochemical performance and morphologies are investigated. The crystal structure is characterized by X-ray diffraction patterns, and refined by two sets of diffraction data (R-3m and C2/m). Refined crystal structure is 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 composite. The inductively coupled plasma optical emission spectrometer and thermogravimetric and differential scanning calorimetry analysis measurement supply reference to optimize the calcination temperature and heat-treatment time. The morphology is characterized by scanning and highresolution transmission electron microscope techniques, and the micro-nanostructured hollow tubes of Li-rich 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 composite with outer diameter of 200-400 nm and the wall thickness of 50-80 nm are synthesized successfully. The electrochemical evaluation shows that 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 sintered at 800 ℃ for 8 h delivers the highest capacity of the first discharge capacity of 267.7 mAh/g between 2.5 V and 4.8 V at 0.1C and remains 183.3 mAh/g after 50 cycles. The electrospinning method with heat-treatment to get micro-nanostructured lithium-rich cathode shows promising application in lithium-ion batteries with stable electrochemical performance and higher C-rate performance for its shorter Li ions transfer channels and stable designed structure.  相似文献   

15.
The electrolytic deposition of TiO2 thin films on platinum for lithium batteries is carried out in TiCl4 alcoholic solution and the films are subsequently annealed. The as-prepared films are amorphous TiO(OH)2·H2O, transformed into anatase TiO2 at 350 °C, and then gradually into rutile TiO2 at 500 °C. Cyclic voltammograms show oxidation and reduction peaks at 2.20 and 1.61 V, respectively, corresponding to charge and discharge plateaus at 1.98 and 1.75 V vs. Li+/Li. The specific capacity decreases with increasing current density for film of 128-nm thickness in the initial discharge. It is observed that the diffusion flux of Li+ insertion/extraction into/from TiO2 controls the reaction rate at higher current densities. Consequently, at low film thickness, high discharge capacity (per weight) is found for the initial cycle at a current density of 10 μA cm− 2. However, the capacity of prepared films in various thicknesses approach 103 ± 5 mAh g− 1 after 50 cycles, since the formation of cracks for thicker films offers shorter diffusion paths for Li+. In addition, TiO2 films show electrochromic properties during lithiation and delithiation.  相似文献   

16.
Layer structured δ-MnO2 was synthesized by a microwave-assisted hydrothermal method. The morphology of the product consists of flower-like spheres that range from about 200 nm to 3 μm in diameter and are composed of sheets about 5-10 nm in thickness. When tested in the voltage range of 2 to 4.5 V vs. Li+/Li in coin cells, the separator is blocked, handicapping Li+ conductivity and leading to cell failure. When tested in the voltage range of 2 to 4 V in ethylene carbonate/dimethyl carbonate (EC/DMC), the δ-MnO2 delivers an initial reversible capacity of 143.7 mAh g−1 and can maintain 120 mAh g−1 at the 60th cycle. The δ-MnO2 electrode shows good cycling stability at different current densities and delivers a discharge capacity of about 90 mAh g−1 at 1 C, indicating that it is a promising cathode material for lithium ion batteries.  相似文献   

17.
Lithium metal is regarded as one of the most ideal anode materials for next-generation batteries, due to its high theoretical capacity of 3860 mAh g−1 and low redox potential (−3.04 V vs standard hydrogen electrode). However, practical applications of lithium anodes are impeded by the uncontrollable growth of lithium dendrite and continuous reactions between lithium and electrolyte during cycling processes. According to reports for decades, artificial solid electrolyte interface (SEI), electrolyte additives, and construction of three-dimensional (3D) structures are demonstrated essential strategies. Among numerous approaches, metals that can alloy with lithium have been employed to homogenize lithium deposition and accelerate Li ion transportation, which attract more and more attention. This review aims to summarize the lithium alloying applied in lithium anodes including the fabricating approaches of alloy-containing lithium anodes, and the action mechanism and challenges of fabricated lithium anodes. Based on summarizing the literature, shortcomings and challenges as well as the prospects are also analyzed, to impel further research of lithium anodes and lithium-based batteries.  相似文献   

18.
The effect of rhodium (Rh) substitution on the electrochemical properties of LiFePO4/C cathode materials was studied. The results of electrochemical measurement show that Rh substitution can improve the rate capability of LiFePO4/C. However, heavy Rh substitution causes a discharge capacity loss. The LiFe0.975Rh0.025PO4/C sample shows an excellent high rate performance and its discharge capacity at a 10 C rate is 117.0 mAh g−1 with a discharge voltage plateau of 3.31–3.0 V versus Li/Li+. LiFe0.975Rh0.025PO4/C also shows a noticeably better cycling life at high temperature than LiFePO4/C. It still remains a capacity of 135.4 mAh g−1 at the 300th cycle at 55 °C under a 1 C rate, which is 82.0% of its initial capacity.  相似文献   

19.
掺硼酚醛树脂热解碳的制备及嵌锂性能研究   总被引:4,自引:0,他引:4  
将热固性酚醛树脂与H3BO3溶解并混合,得到含硼酚醛树脂,经进一步炭化制成掺硼硬碳材料。充放电结果表明,硼的掺杂使锂的嵌/脱容量明显提高,同时1V以下的脱嵌电位降低,且电位平稳性有所改善。XRD分析表明,掺硼后使硬碳的d002明显减小,即碳结构的有序化程度提高。  相似文献   

20.
In this paper, electrochemical investigation of LiNiO2 films prepared by molten salt synthesis (MSS) method was performed to develop a storage electrode of solar cell energy. The preferred orientation constantly indicates (111), (012), (110) and (113). The microstructures confirmed the size of the LiNiO2 particles in a narrow range of ~ 200 nm. Cyclic voltammogram (CV) profiles have broad cathodic peak at 3.7 V and three anodic peaks at 3.4, 3.1 and 1.9 V. For the charge and discharge range of 2.5-4.4 V, the discharge capacity was 159 mAh/g at first, and slowly decreased to 148 mAh/g during the 30th cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号