首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants are dependent on their root systems for survival, and thus are defended from belowground enemies by a range of strategies, including plant secondary metabolites (PSMs). These compounds vary among species, and an understanding of this variation may provide generality in predicting the susceptibility of forest trees to belowground enemies and the quality of their organic matter input to soil. Here, we investigated phylogenetic patterns in the root chemistry of species within the genus Eucalyptus. Given the known diversity of PSMs in eucalypt foliage, we hypothesized that (i) the range and concentrations of PSMs and carbohydrates in roots vary among Eucalyptus species, and (ii) that phylogenetic relationships explain a significant component of this variation. To test for interspecific variation in root chemistry and the influence of tree phylogeny, we grew 24 Eucalyptus species representing two subgenera (Eucalyptus and Symphyomyrtus) in a common garden for two years. Fine root samples were collected from each species and analyzed for total phenolics, condensed tannins, carbohydrates, terpenes, and formylated phloroglucinol compounds. Compounds displaying significant interspecific variation were mapped onto a molecular phylogeny and tested for phylogenetic signal. Although all targeted groups of compounds were present, we found that phenolics dominated root defenses and that all phenolic traits displayed significant interspecific variation. Further, these compounds displayed a significant phylogenetic signal. Overall, our results suggest that within these representatives of genus Eucalyptus, more closely related species have more similar root chemistry, which may influence their susceptibility to belowground enemies and soil organic matter accrual.  相似文献   

2.
Sphagnum mosses mediate long-term carbon accumulation in peatlands. Given their functional role as keystone species, it is important to consider their responses to ecological gradients and environmental changes through the production of phenolics. We compared the extent to which Sphagnum phenolic production was dependent on species, microhabitats and season, and how surrounding dwarf shrubs responded to Sphagnum phenolics. We evaluated the phenolic profiles of aqueous extracts of Sphagnum fallax and Sphagnum magellanicum over a 6-month period in two microhabitats (wet lawns versus dry hummocks) in a French peatland. Phenolic profiles of water-soluble extracts were measured by UHPLC-QTOF-MS. Andromeda polifolia mycorrhizal colonization was quantified by assessing the intensity of global root cortex colonization. Phenolic profiles of both Sphagnum mosses were species-, season- and microhabitat- dependant. Sphagnum-derived acids were the phenolics mostly recovered; relative quantities were 2.5-fold higher in S. fallax than in S. magellanicum. Microtopography and vascular plant cover strongly influenced phenolic profiles, especially for minor metabolites present in low abundance. Higher mycorrhizal colonization of A. polifolia was found in lawns as compared to hummocks. Mycorrhizal abundance, in contrast to environmental parameters, was correlated with production of minor phenolics in S. fallax. Our results highlight the close interaction between mycorrhizae such as those colonizing A. polifolia and the release of Sphagnum phenolic metabolites and suggest that Sphagnum-derived acids and minor phenolics play different roles in this interaction. This work provides new insight into the ecological role of Sphagnum phenolics by proposing a strong association with mycorrhizal colonization of shrubs.  相似文献   

3.
Plants can influence the effectiveness of microbial insecticides through numerous mechanisms. One of these mechanisms is the oxidation of plant phenolics by plant enzymes, such as polyphenol oxidases (PPO) and peroxidases (POD). These reactions generate a variety of products and intermediates that play important roles in resistance against herbivores. Oxidation of the catecholic phenolic compound chlorogenic acid by PPO enhances the lethality of the insect-killing bacterial pathogen, Bacillus thuringiensis var. kurstaki (Bt) to the polyphagous caterpillar, Helicoverpa zea. Since herbivore feeding damage often triggers the induction of higher activities of oxidative enzymes in plant tissues, here we hypothesized that the induction of plant defenses would enhance the lethality of Bt on those plants. We found that the lethality of a commercial formulation of Bt (Dipel® PRO DF) on tomato plants was higher if it was applied to plants that were induced by H. zea feeding or induced by the phytohormone jasmonic acid. Higher proportions of H. zea larvae killed by Bt were strongly correlated with higher levels of PPO activity in the leaflet tissue. Higher POD activity was only weakly associated with higher levels of Bt-induced mortality. While plant-mediated variation in entomopathogen lethality is well known, our findings demonstrate that plants can induce defensive responses that work in concert with a microbial insecticide/entomopathogen to protect against insect herbivores.  相似文献   

4.
We investigated the influences of two structurally similar glucosinolates, phenethylglucosinolate (gluconasturtiin, NAS) and its (S)-2-hydroxyl derivative glucobarbarin (BAR), as well as their hydrolysis products on larvae of the generalist Mamestra brassicae (Lepidoptera: Noctuidae). Previous results suggested a higher defensive activity of BAR than NAS based on resistance toward M. brassicae larvae of natural plant genotypes of Barbarea vulgaris R. Br. (Brassicaceae) dominated by BAR. In the present study, the hypothesis of a higher defensive activity of BAR than NAS was tested by comparing two Barbarea species similarly dominated either by BAR or by NAS and by testing effects of isolated BAR and NAS on larval survival and feeding preferences. Larvae reared on leaf disks of B. verna (Mill.) Asch. had a lower survival than those reared on B. vulgaris P- and G-chemotypes. Leaves of B. verna were dominated by NAS, whereas B. vulgaris chemotypes were dominated by BAR or its epimer. In addition, B. verna leaves showed a threefold higher activity of the glucosinolate-activating myrosinase enzymes. The main product of NAS from breakdown by endogenous enzymes including myrosinases (“autolysis”) in B. verna leaves was phenethyl isothiocyanate, while the main products of BAR in autolyzed B. vulgaris leaves were a cyclized isothiocyanate product, namely an oxazolidine-2-thione, and a downstream metabolite, an oxazolidin-2-one. The glucosinolates BAR and NAS were isolated and offered to larvae on disks of cabbage. Both glucosinolates exerted similar negative effects on larval survival but effects of NAS tended to be more detrimental. Low concentrations of BAR, but not of NAS, stimulated larval feeding, whereas high BAR concentrations acted deterrent. NAS only tended to be deterrent at the highest concentration, but the difference was not significant. Recoveries of NAS and BAR on cabbage leaf disks were similar, and when hydrolyzed by mechanical leaf damage, the same isothiocyanate-type products as in Barbarea plants were formed with further conversion of BAR to cyclic products, (R)-5-phenyloxazolidine-2-thione [(R)-barbarin] and (R)-5-phenyloxazolidin-2-one [(R)-resedine]. We conclude that a previously proposed generally higher defensive activity of BAR than NAS to M. brassicae larvae could not be confirmed. Indeed, the higher resistance of NAS-containing B. verna plants may be due to a combined effect of rather high concentrations of NAS and a relatively high myrosinase activity or other plant traits not investigated yet.  相似文献   

5.
Derivatives of 2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropanecarboxylic acid (chrysanthemic acid) are classic natural pyrethroids discovered in pyrethrum plants and show insecticidal activity. Chrysanthemic acid, with two asymmetric carbons, has four possible stereoisomers, and most natural pyrethroids have the (1R,3R)-trans configuration. Interestingly, chrysanthemic acid–related structures are also found in insect sex pheromones; carboxylic esters of (1R,3R)-trans-(2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropyl)methanol (chrysanthemyl alcohol) have been reported from two mealybug species. In the present study, another ester of chrysanthemyl alcohol was discovered from the striped mealybug, Ferrisia virgata (Cockerell), as its pheromone. By means of gas chromatography–mass spectrometry, nuclear magnetic resonance spectrometry, and high-performance liquid chromatography analyses using a chiral stationary phase column and authentic standards, the pheromone was identified as (1S,3R)-(?)-cis-chrysanthemyl tiglate. The (1S,3R)-enantiomer strongly attracted adult males in a greenhouse trapping bioassay, whereas the other enantiomers showed only weak activity. The cis configuration of the chrysanthemic acid–related structure appears to be relatively scarce in nature, and this is the first example reported from arthropods.  相似文献   

6.
Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. We report here the first evidence of the attraction of three Neotropical mirid predators (Macrolophus basicornis, Engytatus varians and Campyloneuropsis infumatus) toward plants emitting volatiles induced upon feeding by two tomato pests, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci, in olfactometer bioassays. Subsequently, we compared the composition of volatile blends emitted by insect-infested tomato plants by collecting headspace samples and analyzing them with GC-FID and GC-MS. Egg deposition by T. absoluta did not make tomato plants more attractive to the mirid predators than uninfested tomato plants. Macrolophus basicornis is attracted to tomato plants infested with either T. absoluta larvae or by a mixture of B. tabaci eggs, nymphs and adults. Engytatus varians and C. infumatus responded to volatile blends released by tomato plants infested with T. absoluta larvae over uninfested plants. Also, multiple herbivory by T. absoluta and B. tabaci did not increase the attraction of the mirids compared to infestation with T. absoluta alone. Terpenoids represented the most important class of compounds in the volatile blends and there were significant differences between the volatile blends emitted by tomato plants in response to attack by T. absoluta, B. tabaci, or by both insects. We, therefore, conclude that all three mirids use tomato plant volatiles to find T. absoluta larvae. Multiple herbivory did neither increase, nor decrease attraction of C. infumatus, E. varians and M. basicornis. By breeding for higher rates of emission of selected terpenes, increased attractiveness of tomato plants to natural enemies may improve the effectiveness of biological control.  相似文献   

7.
Ophrys flowers mimic sex pheromones of attractive females of their pollinators and attract males, which attempt to copulate with the flower and thereby pollinate it. Virgin females and orchid flowers are known to use the same chemical compounds in order to attract males. The composition of the sex pheromone and its floral analogue, however, vary between pollinator genera. Wasp-pollinated Ophrys species attract their pollinators by using polar hydroxy acids, whereas Andrena-pollinated species use a mixture of non-polar hydrocarbons. The phylogeny of Ophrys shows that its evolution was marked by episodes of rapid diversification coinciding with shifts to different pollinator groups: from wasps to Eucera and consequently to Andrena and other bees. To gain further insights, we studied pollinator attraction in O. leochroma in the context of intra- and inter-generic pollinator shifts, radiation, and diversification in the genus Ophrys. Our model species, O. leochroma, is pollinated by Eucera kullenbergi males and lies in the phylogeny between the wasp and Andrena-pollinated species; therefore, it is a remarkable point to understand pollinator shifts. We collected surface extracts of attractive E. kullenbergi females and labellum extracts of O. leochroma and analyzed them by using gas chromatography with electroantennographic detection (GC-EAD) and gas chromatography coupled with mass spectrometry (GC-MS). We also performed field bioassays. Our results show that O. leochroma mimics the sex pheromone of its pollinator’s female by using aldehydes, alcohols, fatty acids, and non-polar compounds (hydrocarbons). Therefore, in terms of the chemistry of pollinator attraction, Eucera-pollinated Ophrys species might represent an intermediate stage between wasp- and Andrena-pollinated orchid species.  相似文献   

8.
During field screening trials conducted in Brazil in 2015, adults of both sexes of the cerambycid beetles Cotyclytus curvatus (Germar) and Megacyllene acuta (Germar) (subfamily Cerambycinae, tribe Clytini) were significantly attracted to racemic 3-hydroxyhexan-2-one and racemic 2-methylbutan-1-ol, chemicals which previously have been identified as male-produced aggregation-sex pheromones of a number of cerambycid species endemic to other continents. Subsequent analyses of samples of beetle-produced volatiles revealed that males of C. curvatus sex-specifically produce only (R)-3-hydroxyhexan-2-one, whereas males of M. acuta produce the same compound along with lesser amounts of (2S,3S)-2,3-hexanediol and (S)-2-methylbutan-1-ol. Follow-up field trials showed that both sexes of both species were attracted to synthetic reconstructions of their respective pheromones, confirming that males produce aggregation-sex pheromones. The minor pheromone components of M. acuta, (S)-2-methylbutan-1-ol and (2S,3S)-2,3-hexanediol, synergized attraction of that species, but antagonized attraction of C. curvatus to (R)-3-hydroxyhexan-2-one. Beetles of other cerambycine species also were attracted in significant numbers, including Chrysoprasis linearis Bates, Cotyclytus dorsalis (Laporte & Gory), and Megacyllene falsa (Chevrolat). Our results provide further evidence that 3-hydroxyhexan-2-one is a major component of attractant pheromones of numerous cerambycine species world-wide. Our results also highlight our increasing understanding of the crucial role of minor pheromone components in imparting species specificity to cerambycid pheromone blends, as is known to occur in numerous species in other insect families.  相似文献   

9.
The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.  相似文献   

10.
Drosophila santomea and Drosophila yakuba are two sister species inhabiting Saõ Tomé island. Previous studies showed that both species display strong reproductive isolation, although they can produce a few viable hybrids. Our study tried to understand the mechanism of this ethological isolation between two allopatric strains. A strong sexual isolation was confirmed, with a marked asymmetry. Comparisons of latency times to either courtship or copulation suggest that males do not discriminate females, whereas D. yakuba females, but not D. santomea females, accept their homospecifics more quickly. Cuticular hydrocarbon compositions of both species and sexes were also established with gas chromatography (GC) and GC/mass spectrometry analysis. All have (Z)-7-tricosene as their major compound. There are several quantitative differences between species for few minor compounds. The largest difference concerns n-heneicosane, which is more abundant in D. santomea than in D. yakuba flies (up to seven times more between males). A similar quantitative difference was also found in a pair of sympatric strains. Furthermore, D. yakuba males artificially perfumed with n-heneicosane were discriminated negatively by D. yakuba females, suggesting a role for this compound in the sexual isolation between these two species.  相似文献   

11.
Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z–Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z–penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.  相似文献   

12.
Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C18-fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.  相似文献   

13.
The checkerspot butterfly, Euphydryas anicia (Nymphalidae), specializes on plants containing iridoid glycosides and has the ability to sequester these compounds from its host plants. This study investigated larval preference, performance, and sequestration of iridoid glycosides in a population of E. anicia at Crescent Meadows, Colorado, USA. Although previous studies showed that other populations in Colorado use the host plant, Castilleja integra (Orobanchaceae), we found no evidence for E. anicia ovipositing or feeding on C. integra at Crescent Meadows. Though C. integra and another host plant, Penstemon glaber (Plantaginaceae), occur at Crescent Meadows, the primary host plant used was P. glaber. To determine why C. integra was not being used at the Crescent Meadows site, we first examined the host plant preference of naïve larvae between P. glaber and C. integra. Then we assessed the growth and survivorship of larvae reared on each plant species. Finally, we quantified the iridoid glycoside concentrations of the two plant species and diapausing caterpillars reared on each host plant. Our results showed that E. anicia larvae prefer P. glaber. Also, larvae survive and grow better when reared on P. glaber than on C. integra. Castilleja integra was found to contain two primary iridoid glycosides, macfadienoside and catalpol, and larvae reared on this plant sequestered both compounds; whereas P. glaber contained only catalpol and larvae reared on this species sequestered catalpol. Thus, although larvae are able to use C. integra in the laboratory, the drivers behind the lack of use at the Crescent Meadows site remain unclear.  相似文献   

14.
Atractylodes rhizome is widely used in traditional Chinese herbal medicine. Although the chemical composition of the root has been studied in detail, the oil content and fatty acid composition of the seeds of Atractylodes species have not been reported. Fatty acyl composition of seeds from Atractylodes lancea and A. macrocephala was determined by gas chromatography and mass spectrometry of fatty acid methyl esters and 3-pyridylcarbinol esters. The predominant fatty acid in the seeds of both species was linolenic acid, but the unusual acetylenic fatty acid, crepenynic acid (cis-9-octadecen-12-ynoic acid), was also observed at levels of 18% in A. lancea and 13–15% in A. macrocephala. Fatty acid content was 24% for the samples of A. lancea and 16–17% for samples from A. macrocephala. sn-1,3 regioselective lipase digestion of seed lipids revealed that crepenynic acid was absent from the sn-2 position of the seed triacylglycerol. Crepenynic acid was also found in the seed oil of Jurinea mollis at 24% and was not present in the sn-2 position of the TAG. A contrasting distribution of crepenynic acid was found in the oil of Crepis rubra, suggesting differences in crepenynic acid synthesis or TAG assembly between these species.  相似文献   

15.
Insect cuticular hydrocarbons (CHCs) play important roles in chemical communication, as well as having ecological and physiological roles. The use of CHCs for mate recognition has been shown in many insect genera, but little is known about their use in the tea weevil Myllocerinus aurolineatus. Here, we provide evidence that CHCs on the surface of sexually mature M. aurolineatus females act as contact sex pheromones, facilitating mate recognition and eliciting copulatory behavior in male weevils. Using gas chromatography-mass spectrometry, we identify n-pentacosane and n-heptacosane as two potential contact pheromone components. Results from arena bioassays showed that n-pentacosane is a component of a contact pheromone of M. aurolineatus. Further results from the Y-tube olfactometer bioassays showed that n-pentacosane also acts as a volatile attractant. Our results greatly improve our understanding of the chemical ecology of M. aurolineatus.  相似文献   

16.
Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.  相似文献   

17.
The castor bean, Ricinus communis L., is a non-host plant for the large black chafer, Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). In laboratory bioassays we found that this plant was no less attractive than the main host plant (peanut, Arachis hypogaea) and three food plant species: velvetleaf (Abutilon theophrasti), the glossy privet (Ligustrum lucidum), and the Siberian elm (Ulmus pumila). In field trapping experiments a Soxhlet extract of castor bean leaves caught more beetles than the optimal sex lure blend [(R)-(?)-linalool and (L)-isoleucine methyl ester blended in a ratio of 1:4], compared at equal doses (500 μl), and laboratory bioassays indicated that a castor bean plant could enhance the attractiveness of different blend ratios of sex lures. Olfactometer bioassays showed that males prefer volatiles emitted from different combinations of castor bean plant extracts and a signaling female over a female alone. In the presence of castor bean plants copulation rates of H. parallela were highest among all test environments both in laboratory bioassays (60%) and in field tests (70%). This study, combined with our previous observation of the feeding behavior of H. parallela adults on castor bean leaves, suggests that castor bean plants may provide an attractive but risky mating site for H. parallela beetles. The enhancement of male mate-location and copulation rate in the presence of castor bean plants can balance its paralytic effects on H. parallela after intake of potential toxins contained in its leaves.  相似文献   

18.
Glucosinolates are plant secondary defense metabolites confined nearly exclusively to the order Brassicales. Upon tissue rupture, glucosinolates are hydrolyzed to various bioactive breakdown products by the endogenous plant enzyme myrosinase. As the feeding of chewing insect herbivores is associated with plant tissue damage, these insects have developed several independent strategies for coping with the glucosinolate-myrosinase defense system. On the other hand, our knowledge of how phloem-feeding insects interact with the glucosinolate-myrosinase system is much more limited. In fact, phloem feeders might avoid contact with myrosinase altogether so their susceptibility to intoxication by glucosinolate hydrolysis products is unclear. Previous studies utilizing Arabidopsis thaliana plants accumulating high levels of aliphatic- or indolic-glucosinolates indicated that both glucosinolate groups have moderate negative effects on the reproductive performance of Bemisia tabaci, a generalist phloem-feeding insect. To get a deeper understanding of the interaction between B. tabaci and glucosinolate-defended plants, adults were allowed to feed on artificial diet containing intact glucosinolates or on Brussels sprout and A. thaliana plants, and their honeydew was analyzed for the presence of possible metabolites. We found that B. tabaci is capable of cleaving off the sulfate group of intact glucosinolates, producing desulfoglucosinolates that cannot be activated by myrosinases, a mechanism described to date only in several chewing insect herbivores. The presence of desulfated glucosinolates in the honeydew of a generalist phloem-feeder may indicate the necessity to detoxify glucosinolates, likely due to some level of cellular damage during feeding, which results in glucosinolate activation, or as a mechanism to circumvent the non-enzymatic breakdown of indolic glucosinolates.  相似文献   

19.
Epilachna vigintioctopunctata Fabr. (Coleoptera: Coccinellidae) and Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) are important pests of Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae), commonly known as creeping cucumber. The profiles of volatile organic compounds from undamaged plants, plants after 48 hr continuous feeding of adult females of either E. vigintioctopunctata or A. foveicollis, by adults of both species, and after mechanical damaging were identified and quantified by GC-MS and GC-FID analyses. Thirty two compounds were detected in volatiles of all treatments. In all plants, methyl jasmonate was the major compound. In Y-shaped glass tube olfactometer bioassays under laboratory conditions, both insect species showed a significant preference for complete volatile blends from insect damaged plants, compared to those of undamaged plants. Neither E. vigintioctopunctata nor A. foveicollis showed any preference for volatiles released by heterospecifically damaged plants vs. conspecifically damaged plants or plants attacked by both species. Epilachna vigintioctopunctata and A. foveicollis showed attraction to three different synthetic compounds, linalool oxide, nonanal, and E-2-nonenal in proportions present in volatiles of insect damaged plants. Both species were attracted by a synthetic blend of 1.64 μg linalool oxide?+?3.86 μg nonanal?+?2.23 μg E-2-nonenal, dissolved in 20 μl methylene chloride. This combination might be used as trapping tools in pest management strategies.  相似文献   

20.
Parasitic wasps which attack insects infesting processed stored food need to locate their hosts hidden inside these products. Their host search is well-known to be guided by host kairomones, perceived via olfaction or contact. Among contact kairomones, host cuticular hydrocarbons (CHCs) may provide reliable information for a parasitoid. However, the chemistry of CHC profiles of hosts living in processed stored food products is largely unknown. Here we showed that the ectoparasitoid Holepyris sylvanidis uses CHCs of its host Tribolium confusum, a worldwide stored product pest, as kairomones for host location and recognition at short range. Chemical analysis of T. confusum larval extracts by gas chromatography coupled with mass spectrometry revealed a rich blend of long-chain (C25-C30) hydrocarbons, including n-alkanes, mono-, and dimethylalkanes. We further studied whether host larvae leave sufficient CHCs on a substrate where they walk along, thus allowing parasitoids to perceive a CHC trail and follow it to their host larvae. We detected 18 CHCs on a substrate that had been exposed to host larvae. These compounds were also found in crude extracts of host larvae and made up about a fifth of the CHC amount extracted. Behavioral assays showed that trails of host CHCs were followed by the parasitoids and reduced their searching time until successful host recognition. Host CHC trails deposited on different substrates were persistent for about a day. Hence, the parasitoid H. sylvanidis exploits CHCs of T. confusum larvae for host finding by following host CHC trails and for host recognition by direct contact with host larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号