首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In comparison to the large amount of study on the communication abilities of females in ant societies and their associated chemical ecology and sensory physiology, such study of male ants has been largely ignored; accordingly, little is known about their olfactory sensory capabilities. To address this, we explored peripheral odor sensitivities in male Harpegnathos saltator by measuring the electrophysiological activity of olfactory sensory neurons within antennal trichoid and coeloconic sensilla using an extracellular recording technique. In an initial trial of 46 compounds, sensilla trichodea responded strongly to two alarm pheromone components, while a limited number of non-hydrocarbon odorants elicited strong responses in sensilla coeloconica. Both sensillar types responded indifferently to 31 cuticular hydrocarbons (CHCs) and synthetic long-chain hydrocarbons (HCs) typically found on insect cuticle. In a search for sensilla responding to CHCs and other compounds, we found some sensilla that responded to synthetic HCs and CHCs from virgin queen postpharyngeal glands that are potentially used in close range mate recognition. Olfactometer bioassays of male ants to 15 non-HCs correlated sensory responsiveness to the respective behavioral responses. Comparing olfactory responses between H. saltator males and females, we found that sensilla coeloconica and basiconica of workers showed greater responses and broader selectivity to all compounds. The rarity of CHC-responding trichoid sensilla in Harpegnathos males suggests a more specific role in sexual communication compared to that in females, which use CHCs in a broader communication context.  相似文献   

2.
Research over the last decade has revealed extensive parsimony among pheromones within the large insect family Cerambycidae, with males of many species producing the same, or very similar aggregation pheromones. Among some species in the subfamily Cerambycinae, interspecific attraction is minimized by temporal segregation, and/or by minor pheromone components that synergize attraction of conspecifics or inhibit attraction of heterospecifics. Less is known about pheromone-based mechanisms of reproductive isolation among species in the largest subfamily, the Lamiinae. Here, we present evidence that the pheromone systems of two sympatric lamiine species consist of synergistic blends of enantiomers of (E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol) and the structurally related (E)-6,10-dimethyl-5,9-undecadien-2-yl acetate (fuscumol acetate), as a mechanism by which species-specific blends of pheromone components can minimize interspecific attraction. Male Astylidius parvus (LeConte) were found to produce (R)- and (S)-fuscumol + (R)-fuscumol acetate + geranylacetone, whereas males of Lepturges angulatus (LeConte) produced (R)- and (S)-fuscumol acetate + geranylacetone. Field experiments confirmed that adult beetles were attracted only by their species-specific blend of the enantiomers of fuscumol and fuscumol acetate, respectively, and not to the individual enantiomers. Because other lamiine species are known to produce single enantiomers or blends of enantiomers of fuscumol and/or fuscumol acetate, synergism between enantiomers, or inhibition by enantiomers, may be a widespread mechanism for forming species-specific pheromone blends in this subfamily.  相似文献   

3.
Parasitoids often use complex cues to identify suitable hosts in their environment. Phorid fly parasitoids that develop on one or a few host species often use multiple cues, ranging from general to highly specific, to home in on an appropriate host. Here, we describe the hierarchy of cues that Pseudacteon phorid flies use to identify Azteca ant hosts. We show, through behavioral observations in the field, that phorid flies are attracted to two cryptic Azteca species, but only attack Azteca sericeasur (Hymenoptera: Formicidae: Dolichoderinae). To test whether the phorid flies use cuticular hydrocarbons (CHCs) to distinguish between the two Azteca taxa, we first documented and compared cuticular hydrocarbons of the two Azteca taxa using gas chromatography/mass spectrometry. Then, using cuticular hydrocarbon-transfer experiments with live ants, we characterized the cuticular hydrocarbons of A. sericeasur as a short-range, host location cue used by P. lasciniosus (Diptera: Phoridae) to locate the ants.  相似文献   

4.
In mutualisms, partner discrimination is often the most important challenge for interacting organisms. The interaction between ants and aphids is a model system for studying mutualisms; ants are provided with honeydew by aphids and, in turn, the ants offer beneficial services to the aphids. To establish and maintain this system, ants must discriminate mutualistic aphid species correctly. Although recent studies have shown that ants recognize aphids as mutualistic partners based on their cuticular hydrocarbons (CHCs), it was unclear which CHCs are involved in recognition. Here, we tested whether the n-alkane or methylalkane fraction, or both, of aphid CHCs were utilized as partner recognition cues by measuring ant aggressiveness toward these fractions. When workers of Tetramorium tsushimae ants were presented with dummies coated with n-alkanes of their mutualistic aphid Aphis craccivora, ants displayed higher levels of aggression than to dummies treated with total CHCs or methyl alkanes of A. craccivora; responses to dummies treated with n-alkanes of A. craccivora were similar to those to control dummies or dummies treated with the CHCs of the non-mutualistic aphid Acyrthosiphon pisum. By contrast, ants exhibited lower aggression to dummies treated with either total CHCs or the methylalkane fraction of the mutualistic aphid than to control dummies or dummies treated with CHCs of the non-mutualistic aphid. These results suggest that T. tsushimae ants use methylalkanes of the mutualistic aphid’s CHCs to recognize partners, and that these ants do not recognize aphids as partners on the basis of n-alkanes.  相似文献   

5.
Species of the ant genus Polyergus are social parasites that steal brood from colonies of their hosts in the closely related genus Formica. Upon emergence as adults in a mixed population, host Formica workers carry out all the normal worker functions within the Polyergus colony, including foraging, feeding, grooming, and rearing brood of the parasitic Polyergus ants. Some unmated Polyergus gynes (queens) run in the raiding columns of their colonies and attract males by releasing a pheromone from their mandibular glands. There are two Polyergus species groups in North America: an eastern P. lucidus group and a western P. breviceps group. One species of each of these groups, P. lucidus Mayr and P. mexicanus Emery, are sympatric in Missouri. In this study, we characterized the sex pheromones of virgin queens of two species of the P. lucidus group (P. lucidus sensu stricto and P. sanwaldi) and one species of the P. breviceps group (P. mexicanus), and compared these with the previously identified sex pheromone of P. topoffi of the P. breviceps group. We then used sex pheromone blends reconstructed from synthesized components of the two groups to test their efficacy at reproductively isolating these species. We found that methyl 6-methylsalicylate is conserved as the major component of the pheromone blends for both Polyergus species groups; however, methyl (R)-3-ethyl-4-methylpentanoate is the species-specific minor component produced by P. lucidus group queens, and (R)-3-ethyl-4-methylpentan-1-ol is the crucial minor component for P. breviceps group queens. The optimal ratio of the major and minor components for P. lucidus group queens was about 100:1 salicylate to ester. In concurrent field trials in Missouri, males of P. lucidus sensu stricto and P. mexicanus (a member of the P. breviceps group) were attracted almost exclusively to their particular blends of sex pheromone components. To our knowledge, this is the first example of a possible sex-pheromone-based reproductive isolating mechanism in ants.  相似文献   

6.
In response to herbivory by insects, various plants produce volatiles that attract enemies of the herbivores. Although ants are important components of natural and agro-ecosystems, the importance of herbivore-induced plant volatiles (HIPVs) as cues for ants for finding food sources have received little attention. We investigated responses of the ant Formica pratensis to volatiles emitted by uninfested and insect-infested cucumber (Cucumis sativus) and potato (Solanum tuberosum) plants. Cucumber plants were infested by the phloem-feeding aphid Aphis gossypii, the leaf chewer Mamestra brassicae or simultaneously by both insects. Potato plants were infested by either Aphis gossypii, by the leaf chewer Chrysodeixis chalcites or both. In olfactometer experiments, ants preferred volatile blends emitted by cucumber plants infested with M. brassicae caterpillars alone or combined with A. gossypii to volatiles of undamaged plants or plants damaged by A. gossypii only. No preference was recorded in choice tests between volatiles released by aphid-infested plants over undamaged plants. Volatiles emitted by potato plants infested by either C. chalcites or A. gossypii were preferred by ants over volatiles released by undamaged plants. Ants did not discriminate between potato plants infested with aphids and caterpillars over plants infested with aphids only. Plant headspace composition showed qualitative and/or quantitative differences between herbivore treatments. Multivariate analysis revealed clear separation between uninfested and infested plants and among herbivore treatments. The importance of HIPVs in indirect plant defence by ants is discussed in the context of the ecology of ant-plant interactions and possible roles of ants in pest management.  相似文献   

7.
In eusocial insects like Bald-faced hornets, Dolichovespula maculata, nest defense is essential because nests contain a large number of protein-rich larvae and pupae, and thus are attractive to nest predators. Our objectives were to investigate whether D. maculata exhibit pheromone-mediated nest defense, and to identify and field test any pheromone components. We tested for pheromone-mediated nest defense behavior of D. maculata by placing a paired box-apparatus near the entrance of D. maculata nests, and treating both boxes with a solvent control, or one of the two boxes with a solvent control and the other with either venom sac extract, the putative source of nest defense pheromone, or synthetic pheromone. The sound impulses caused by nest mates attempting to sting or strike the boxes were recorded for 3 min. Compared to the double-control treatment, the number of strikes increased 27-fold when one of the two boxes was treated with venom sac extract, providing evidence for an alarm response. The box treated with venom sac extract also induced a significantly greater proportion of strikes than the corresponding control box, providing evidence for a target-oriented response. Analyzing venom sac extract by gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometry resulted in the identification of seven candidate pheromone components: (a) dimethylaminoethanol, (b) dimethylamino ethyl acetate, (c) 2,5-dimethylpyrazine, (d) N-3-methylbutylacetamide, (e) 2-heptadecanone, (f) (Z)-8-heptadecen-2-one, and (g) (Z)-10-nonadecen-2-one. Testing in paired-box bioassays blends of the nitrogen-containing volatile components a-d, the less volatile ketones e-g, or both (a-g), indicated that a-d primarily have an alarm function. The ketones e-g, in contrast, induced target-oriented responses, possibly marking the box, or potential nest predators, for guided and concerted attacks, or enhancing the alarm-inducing effect of the volatile pheromone components, as shown in honey bees. Comparing the behavioral effects of venom sac extract, blends a-d, e-g, and a-g, venom sac extract was most effective in triggering the full complement of alarm and target-oriented responses. These comparisons further suggested that a component is missing in the group of components that triggers the alarm rather than the target-oriented response.  相似文献   

8.
We compared pheromone production and response for populations of western pine beetle, Dendroctonus brevicomis LeConte, from sites in northern Arizona and northern California. Volatiles were collected from individuals of both sexes that had mined as a pair in a Pinus ponderosa log for 1 d, and they were subsequently analyzed by gas chromatography coupled to mass-spectrometry. Principal component analysis of quantities of Dendroctonus pheromone components indicated strong site-associated clustering of blend composition for females but not males. Much of the clustering in females evidently was due to differences in the production of endo- and exo-brevicomin, which occurred in average ratios of 0.1:1 and 19:1 for populations in the California and Arizona sites, respectively. In the California site, exo- was better than endo-brevicomin in enhancing trap catches of both sexes to lures containing the host-tree odor α-pinene and the male-produced aggregation pheromone component frontalin. In an identical test in the Arizona site, endo- was a better adjuvant than exo-brevicomin for male attraction, whereas females did not show a significant preference. At neither location were the isomers antagonistic to one another in activity. Thus, one aggregation pheromone has apparently diverged between these populations, concurrent with published evidence that D. brevicomis on either side of the Great Basin are genetically distinct and are possibly different species. Furthermore, production of and response to the isomers of brevicomin by flying Dendroctonus frontalis Zimmermann in the Arizona site were similar to those of sympatric D. brevicomis. This interspecific signal overlap is likely sustainable since joint species mass-attacks may assist both species in overcoming host defenses, thereby increasing host availability.  相似文献   

9.
To date, all known or suspected pheromones of click beetles (Coleoptera: Elateridae) have been identified solely from species native to Europe and Asia; reports of identifications from North American species dating from the 1970s have since proven to be incorrect. While conducting bioassays of pheromones of a longhorned beetle (Coleoptera: Cerambycidae), we serendipitously discovered that males of Cardiophorus tenebrosus L. and Cardiophorus edwardsi Horn were specifically attracted to the cerambycid pheromone fuscumol acetate, (E)-6,10-dimethylundeca-5,9-dien-2-yl acetate, suggesting that this compound might also be a sex pheromone for the two Cardiophorus species. Further field bioassays and electrophysiological assays with the enantiomers of fuscumol acetate determined that males were specifically attracted by the (R)-enantiomer. However, subsequent analyses of extracts of volatiles from female C. tenebrosus and C. edwardsi showed that the females actually produced a different compound, which was identified as (3R,6E)-3,7,11-trimethyl-6,10-dodecadienoic acid methyl ester (methyl (3R,6E)-2,3-dihydrofarnesoate). In field trials, both the racemate and the (R)-enantiomer of the pheromone attracted similar numbers of male beetles, suggesting that the (S)-enantiomer was not interfering with responses to the insect-produced (R)-enantiomer. This report constitutes the first conclusive identification of sex pheromones for any North American click beetle species. Possible reasons for the strong and specific attraction of males to fuscumol acetate, which is markedly different in structure to the actual pheromone, are discussed.  相似文献   

10.
In this study, we isolated and identified an aggregation-sex pheromone from Monochamus saltuarius, the major insect vector of the pine wood nematode in Korea. Adult males of M. saltuarius produce 2-undecyloxy-1-ethanol, which is known as an aggregation-sex pheromone in other Monochamus species. We performed field experiments to determine the attractiveness of the pheromone and other synergists. More M. saltuarius adult beetles were attracted to traps baited with the pheromone than to unbaited traps. Ethanol and (?)-α-pinene interacted synergistically with the pheromone. Traps baited with the pheromone + (?)-α-pinene +ethanol were more attractive to M. saltuarius adults than traps baited with the pheromone, (?)-α-pinene, or ethanol alone. Ipsenol, ipsdienol, and limonene were also identified as synergists of the aggregation-sex pheromone for M. saltuarius adults. In field experiments, the proportion of females was much higher in the beetles caught in traps than among the beetles emerging from naturally-infested logs in the laboratory. Our results suggest that a combination of aggregation-sex pheromone and synergists could be very effective for monitoring and managing M. saltuarius.  相似文献   

11.
The primary sex pheromone components of the female spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), are (E)- and (Z)-11-tetradecenal, produced in 95:5 ratio. However, male flight responses to calling females in a wind tunnel were faster and maintained longer than responses to any synthetic aldehyde blend. Analyses of cuticular extracts from spruce budworm adults revealed series of n-alkanes and n-monoalkenes with predominantly odd numbers of carbon atoms from C23- C29 in both sexes. (Z,Z,Z)-3,6,9-tricosatriene and (Z,Z,Z)-3,6,9-pentacosatriene were identified only in cuticular extracts from females. Pheromonally naïve males showed wing fanning and circling responses to forewing scales from females but not to scales from males. Males also exhibited the same strong responses to scales excised from pharate females, indicating that the pheromone components are produced by females prior to emergence. (Z)-11-hexadecenal and (Z)-5-tricosene enhanced male responses to the primary sex pheromone aldehydes in wind tunnel bioassays, including higher proportions of in-flight and copulatory responses by males and increased time on the source. Addition of (Z,Z,Z)-3,6,9-tricosatriene to the 95/5 blend of (E)- and (Z)-11-tetradecenal released close-range copulatory responses including abdomen curling on treated septa. We propose that the sex pheromone blend of C. fumiferana is composed of the 95/5 blend of (E)- and (Z)-11-tetradecenal as primary components, with (Z)-11-hexadecenal, (Z)-5-tricosene and (Z,Z,Z)-3,6,9-tricosatriene fulfilling secondary roles in orientation and close-range courtship.  相似文献   

12.
The longhorn beetle Phymatodes (Poecilium) pusillus ssp. pusillus is a rare, elusive species that is included on Red Lists of threatened species. Previously, 1-hexanol and 1-butanol were reported as putative components of the aggregation-sex pheromone of this species, but behavioral assays to confirm this have not been performed. In this study, we undertook a comprehensive examination of P. p. pusillus to verify the presence of a pheromone. Adult beetles were reared from colonized wood and used for headspace sampling. Analyses by gas chromatography-mass spectrometry revealed that two compounds were present in large quantities in the extracts of males, but absent in extracts from females. Male and female antennae showed repeatable responses to the two compounds in electrophysiological recordings. Using synthetic standards, we were able to identify the compounds as 1-hexanol and 2-methyl-1-butanol. A field bioassay demonstrated that the two compounds were unattractive when applied singly, but elicited significant attraction of female and male beetles when applied in blends of different ratios. We also found that the species exhibited significant attraction to a blend of 3-hydroxy-2-hexanone and 2-methyl-1-butanol, which is the aggregation-sex pheromone of at least two closely related and sympatric species. The presence of the heterospecific component 3-hydroxy-2-hexanone synergized a response to 2-methyl-1-butanol. The pheromone of these species may function as a host cue for P. p. pusillus as the three species have similar phenology and substrate demands. The aggregation-sex pheromone of P. p. pusillus can be used for population monitoring and as a tool to study the general ecology and conservation requirements of this rare species.  相似文献   

13.
Pheromone binding proteins (PBPs) are thought to play key roles in insect sex pheromone recognition; however, there is little in vivo evidence to support this viewpoint in comparison to abundant biochemical data in vitro. In the present study, two noctuid PBP genes HarmPBP1 and HarmPBP2 of the serious agricultural pest, Helicoverpa armigera were selected to be knocked down by RNA interference, and then the changes in electrophysiological and behavioral responses of male mutants to their major sex pheromone component (Z)-11-hexadecenal (Z11–16:Ald) were recorded. There were no significant electrophysiological or behavioral changes of tested male moths in response to Z11–16:Ald when either single PBP gene was knocked down. However, decreased sensitivity of male moths in response to Z11–16:Ald was observed when both HarmPBP1 and HarmPBP2 genes were silenced. These results reveal that both HarmPBP1 and HarmPBP2 are required for the recognition of the main sex pheromone component Z11–16:Ald in H. armigera. Furthermore, these findings may help clarify physiological roles of moth PBPs in the sex pheromone recognition pathway, which in turn could facilitate pest control by exploring sex pheromone blocking agents.  相似文献   

14.
In aquatic environments, chemical cues are believed to be associated with prey response to predation risk, yet few basic cue compositions are known despite the pronounced ecological and evolutionary significance of such cues. Previous work indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in amphibian tadpoles. However, work described here confirms that this specific ion species m/z 501.2886 is produced by injured tadpoles, exhibits increased spectral intensity with higher tadpole biomass, and is not produced by starved predators. These results indicate the anion is an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]?, m/z 501.2886, of C26H45O7S? which could not be determined in previous studies using low resolution instruments. Collision induced dissociation of m/z 501 ions formed product ions of m/z 97 and m/z 80, HSO4? and SO3?, respectively, showing the presence of sulfate. Green frog tadpoles, Lithobates clamitans, exposed to the m/z 501 anion or sodium dodecyl sulfate exhibited similar anti-predator responses, suggesting organic sulfate is a tadpole behavior modifier.  相似文献   

15.
During field screening trials conducted in Brazil in 2015, adults of both sexes of the cerambycid beetles Cotyclytus curvatus (Germar) and Megacyllene acuta (Germar) (subfamily Cerambycinae, tribe Clytini) were significantly attracted to racemic 3-hydroxyhexan-2-one and racemic 2-methylbutan-1-ol, chemicals which previously have been identified as male-produced aggregation-sex pheromones of a number of cerambycid species endemic to other continents. Subsequent analyses of samples of beetle-produced volatiles revealed that males of C. curvatus sex-specifically produce only (R)-3-hydroxyhexan-2-one, whereas males of M. acuta produce the same compound along with lesser amounts of (2S,3S)-2,3-hexanediol and (S)-2-methylbutan-1-ol. Follow-up field trials showed that both sexes of both species were attracted to synthetic reconstructions of their respective pheromones, confirming that males produce aggregation-sex pheromones. The minor pheromone components of M. acuta, (S)-2-methylbutan-1-ol and (2S,3S)-2,3-hexanediol, synergized attraction of that species, but antagonized attraction of C. curvatus to (R)-3-hydroxyhexan-2-one. Beetles of other cerambycine species also were attracted in significant numbers, including Chrysoprasis linearis Bates, Cotyclytus dorsalis (Laporte & Gory), and Megacyllene falsa (Chevrolat). Our results provide further evidence that 3-hydroxyhexan-2-one is a major component of attractant pheromones of numerous cerambycine species world-wide. Our results also highlight our increasing understanding of the crucial role of minor pheromone components in imparting species specificity to cerambycid pheromone blends, as is known to occur in numerous species in other insect families.  相似文献   

16.
In burying beetles, Nicrophorus spp. (Coleoptera: Silphidae: Nicrophorinae) mate finding is mediated by male produced volatile compounds. To date, pheromone components of only two species have been identified. In an attempt to better understand the evolution of male pheromone signaling in burying beetles, we investigated the male released volatiles of ten Nicrophorus species and one closely related nicrophorine species, Ptomascopus mori. Volatiles emitted by calling males were collected in the laboratory by means of solid phase micro extraction and analyzed using gas chromatography coupled with mass spectrometry. Identified volatiles included short chain esters of 4-methylcarboxylic acids, terpenoids, and some other aliphatic compounds. The long-range volatile signals of the burying beetle species included in this study are blends of two to seven components. We found that methyl or ethyl esters of 4-methylheptanoic acid and 4-methyloctanoic acid are produced by eight of the ten investigated Nicrophorus species. These esters may play a key role in chemical communication. Their widespread occurrence suggests that these compounds did not evolve recently, but appeared relatively early in the phylogeny of the genus. Although Ptomascopus is considered the sister genus of Nicrophorus, P. morio males do not produce any of the Nicrophorus compounds, but release 3-methylalkan-2-ones, which are absent in Nicrophorus. A better understanding of the evolution of burying beetle pheromones, however, will only be possible once more species have been studied.  相似文献   

17.
A recent study showed that a wingless parasitoid, Gelis agilis, exhibits a suite of ant-like traits that repels attack from wolf spiders. When agitated, G. agilis secreted 6-methyl-5-hepten-2-one (sulcatone), which a small number of ant species produce as an alarm/panic pheromone. Here, we tested four Gelis parasitoid species, occurring in the same food chain and microhabitats, for the presence of sulcatone and conducted two-species choice bioassays with wolf spiders to determine their degree of susceptibility to attack. All four Gelis species, including both winged and wingless species, produced sulcatone, whereas a closely related species, Acrolyta nens, and the more distantly related Cotesia glomerata, did not. In two-choice bioassays, spiders overwhelmingly rejected the wingless Gelis species, preferring A. nens and C. glomerata. However, spiders exhibited no preference for either A. nens or G. areator, both of which are winged. Wingless gelines exhibited several ant-like traits, perhaps accounting for the reluctance of spiders to attack them. On the other hand, despite producing sulcatone, the winged G. areator more closely resembles other winged cryptines like A. nens, making it harder for spiders to distinguish between these two species. C. glomerata was also preferred by spiders over A. nens, suggesting that other non-sulcatone producing cryptines nevertheless possess traits that make them less attractive as prey. Phylogenetic reconstruction of the Cryptinae reveals that G. hortensis and G. proximus are ‘sister’species, with G. agilis, and G.areator in particular evolving along more distant trajectories. We discuss the possibility that wingless Gelis species have evolved a suite of ant-like traits as a form, of mimicry to repel predators on the ground.  相似文献   

18.
Adult Drosophila melanogaster locate food resources by using distinct olfactory cues that often are associated with the fermentation of fruit. However, in addition to being an odorous food source and providing a possible site for oviposition, fermenting fruit also provides a physical substrate upon which flies can attract and court a potential mate. In this study, we demonstrate that Drosophila adults are able to recruit additional flies to a food source by covering the exposed surface area with fecal spots, and that this recruitment is mediated via olfactory receptors (Ors). Analyses of the deposited frass material demonstrates that frass contains several previously studied pheromone components, such as methyl laurate (ML), methyl myristate (MM), methyl palmitate (MP), and 11-cis-vaccenyl acetate (cVA), in addition to several cuticular hydrocarbons (CHCs) that are known to be behaviorally active. Moreover, this study also demonstrates that adult feeding is increased in the presence of frass, although it appears that Ors are less likely to mediate this phenomenon. In summary, the frass deposited by the fly onto the fruit provides both pheromone and CHC cues that lead to increased feeding and aggregation in Drosophila. This research is the first step in examining Drosophila frass as an important chemical signature that provides information about both the sex and the species of the fly that generated the fecal spots.  相似文献   

19.
The sex pheromones of many aphid species from the subfamily Aphididae comprise a mixture of the iridoids (cyclopentanoids) (1R,4aS,7S,7aR)-nepetalactol and (4aS,7S,7aR)-nepetalactone. In this paper, we investigate whether other chemicals, in addition to nepetalactol and nepetalactone, are released from Dysaphis plantaginea (rosy apple aphid) oviparae as part of their sex pheromone. Four compounds present in an air entrainment sample collected from D. plantaginea oviparae feeding on apple (Malus silvestris c.v. Braburn) elicited electrophysiological responses from male D. plantaginea. Active peaks were tentatively identified by gas chromatography (GC) coupled with mass spectrometry, with identification confirmed by peak enhancement with authentic compounds on GC columns of different polarities. The electroantennography-active chemicals were (1R,4aS,7S,7aR)-nepetalactol, (4aS,7S,7aR)-nepetalactone, (1S,2R,3S)-dolichodial, and phenylacetonitrile. (1S,2R,3S)-Dolichodial elicited a behavioral response from male D. plantaginea and naïve-mated female parasitoids, Aphidius ervi. This is the first report of electrophysiological and behavioral responses from any aphid morph to (1S,2R,3S)-dolichodial. Whether or not (1S,2R,3S)-dolichodial is a third component of the aphid sex pheromone is discussed.  相似文献   

20.
Recent work has suggested that hawk moths share pheromone components but are sexually separated by qualitative and quantitative differences in their pheromone blends. During field assays on the sex pheromones of other species, a diurnal hawk moth, Neogurelca himachala sangaica (Lepidoptera: Sphingidae), was frequently captured, but the composition of the sex pheromone of this species was not known. Analysis of hexane extracts of the pheromone glands of calling female by gas chromatography (GC) using an electroantennographic detector (EAD) revealed two components that elicited EAD responses from male moth antennae. These components were identified by their mass spectra and retention indices on two GC columns as (10E,12Z)-10,12-hexadecadienal (E10,Z12–16:Ald) and a trace of its (10E,12E)-isomer (E10,E12–16:Ald) in 98:2 ratio. In field experiments, E10,Z12–16:Ald alone attracted male moths, and addition of E10,E12–16:Ald significantly reduced the attractiveness, even at the naturally-occurring ratio. Analysis of the data using a generalized linear mixed model showed that E10,Z12–16:Ald positively contributed to attractiveness, whereas E10,E12–16:Ald did so negatively, and it was concluded that the sex pheromone of N. himachala sangaica consists solely of E10,Z12–16:Ald, bombykal. The negative effect of E10,E12–16:Ald on attractiveness could promote the species-specificity of this single-component pheromone system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号