首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
旋翼式蒸汽流量计的选用与维修张发明(浙江省衢州市浙西化工厂计量室衢州市324000)分流旋翼式蒸汽流量计是一种专门用于测量流经蒸汽管道内饱和或过热蒸汽流量的质量流量计。它能简便地直接安装在蒸汽管道上,不需要外加能源,通过指示器表盘就能在现场直接显示蒸...  相似文献   

2.
本文介绍的不满管污水流量测量是根据管道中液位的测量值直接计算出污水流量。论述了测量原理和流量计算公式,介绍了一种适用于污水液位测量用的电量检测式抗沾污电容传感器。最后,简述了污水流量计的构成及其在实验室的实验结果和现场运行情况。  相似文献   

3.
介绍一种工业用大口径超声式气体管道流量测量系统的电路设计。该系统是一种带有微机的全电子式仪器,它克服了带有转子式的气体流量计固有的时漂误差,这种误差的主要来源在于管道中的油污或锈蚀造成了转子的丢转现象。该流量测量系统不仅适于各工厂中大口径管道的各种工业气体的流量测量,也适于西气东输等大型工程项目,具有广泛的应用前景。  相似文献   

4.
瓦斯流量计是一种用新的原理来测量管道中瓦斯的平均流速的新型仪表。它的优点是结构很简单,在一些精度要求不高的场合,它不失为一种很有前途的便携式流量仪表。因此,本文为初探其原理和推导它的速度方程。测量回路如图4。管道中的瓦斯在途经检测管时,有一小部分流入a口、通过小孔板和分流流量计再经b口流入管道。也就是说,测量回路分流了管道中的瓦斯流量。串联在测量回路中的分流流量计可测出分流的流量。这种瓦斯流量计的原理就是用测出的分流流量来表达管道中的瓦斯流速。如何用分流流量来表达管道流速呢?要解决两个问  相似文献   

5.
本文介绍了热式质量流量计的测量原理及恒流式、恒温差式两种测量方法。根据热式流量计的测试原理。提出了用于小流量测量的恒电压式热式质量流量计的设计方案并进行了实验验证。实验表明在严格控制电压的条件下,流量计具有良好的性能。  相似文献   

6.
朱云 《仪器仪表学报》2006,27(8):894-897
基于脉动流场中差压式流量计的计量特性,本文分析了差压式流量计在各种脉动流频率和幅度下的流量测量误差。针对不同脉动频率和脉动幅度的脉动流,在自行设计的实验装置中使用响应时间不同的差压式流量计进行流量测量的研究,获得了流量计响应时间、流体的脉动幅度和频率与流量测量误差间的变化对应关系。研究结果表明,通过减少脉动幅值和缩短流量计的响应时间可有效地减少流量测量误差。  相似文献   

7.
大口径计量仪表按工作原理与信号传递分差压和频率式两大类,其中频率式较为优越,本文重点介绍频率式计量仪表主要是大管径流量计的选型。据安装方法的不同,当采用仪表直接与测量管道相接或把探头装在测量管道两侧来测量管道平均流量时,介绍了超声波和电磁流量计的应用和优点;当采用仪表插入测量管道中来测量管道中心流速,再用数字平均法求出管道平均流量时,介绍了插入式涡轮流量计的应用和特点。简介了选用和维护要点。  相似文献   

8.
翻斗式自记流量计从工作原理的角度看,属于容积式流量计的一种,但从应用范围看,又与目前各种形式的容积式流量计均有所不同.目前传统的容积式流量计主要应用于有压管道情况,而翻斗式自记流量计主要应用于各种无压、低水头、小流量的地表和地下径流的监测.针对水文科学中有关无压、低水头、小流量的地表和地下径流的监测手段较为落后的局面,在分析翻斗式自记流量计基本构成、工作原理的基础上,对其制作工艺、误差及主要应用情况进行了阐述,旨在能够提高我国水文监测的水平.  相似文献   

9.
翻斗式自记流量计从工作原理的角度看,属于容积式流量计的一种,但从应用范围看,又与目前各种形式的容积式流量计均有所不同。目前传统的容积式流量计主要应用于有压管道情况,而翻斗式自记流量计主要应用于各种无压、低水头、小流量的地表和地下径流的监测。本文针对水文科学中有关无压、低水头、小流量的地表和地下径流的监测手段较为落后的局面,在分析翻斗式自记流量计基本构成、工作原理及可应用领域的基础上,重点对其制作工艺和应注意的问题进行了详细介绍与说明,旨意能够起到抛砖引玉的作用,提高我国水文监测的水平。  相似文献   

10.
选带细化超声流量计试验分析   总被引:1,自引:0,他引:1  
文中研究一种用于工业密闭管道流体流量测量的新型超声波多普勒流量计。采用中频调制为基础提取流体流速的方向信息,引入选带细化频谱分析技术(Z00M—FFT)对解调后的超声波多普勒信号进行频谱估计,并以此为基础计算管道流量。该方法能判断流速的方向;降低流速测量下限;提高了流速测量的动态响应速度、实时性以及稳定性。实验表明选通细化超声流量计准确度等级为1.5级。  相似文献   

11.
Parameter measurement of gas–liquid two-phase flows with a high gas volume fraction (GVF) has received great attention in the research field of multiphase flow. The cone meter, as a new proposed differential pressure (DP) meter, is increasingly being applied in flowrate measurement of gas–liquid two-phase flow. A dual-parameter measurement method of gas–liquid two-phase flow based on a dual-cone meter is proposed. The two-phase flow is investigated in a horizontal pipeline with high GVF and low pressure, and exists in the form of annular flow. By adding a second cone meter, both gas mass fraction (GMF) and mass flowrate are measured. The pressure drop performances of five different sized cones have been discussed to make a cooperating cone selection and efficiently position the dual-cone in the pipe. Dual-cone flowmeter experiments of 0.45 and 0.65 equivalent diameter ratio combination, and 0.65 and 0.85 equivalent diameter ratio combination are respectively carried out to analyze the linearity of two-phase flow multiplier with Lockhart–Martinelli parameter and obtain the dual-parameter measurement results. The relative experiment error of GMF, gas mass flowrate and total mass flowrate are respectively within ±7%, ±5% and ±10%. The relative error of the liquid phase is within ±10% when the liquid mass fraction is beyond 40%. The experimental results show that it is efficient to utilize this dual-cone method for high GVF and low pressure gas–liquid two-phase flow measurement.  相似文献   

12.
The performance of a turbine meter in two-phase (water/air) flow in a vertical pipe is assessed. If the single phase (water) meter factor is used in two-phase flow, the total (water and air) flowrate is found to be underpredicted. The error can be as much as 12.5% at a void fraction of 25%. A technique for using measurements of the fluctuations in the turbine meter rotor velocity to determine void fraction (= air flowrate/total flowrate) is described. A single meter is then used to measure, using this technique, both the water flowrate to an accuracy of ± 2% and void fraction to an accuracy of ±0.02.  相似文献   

13.
在水平T型分支管道中用压缩宅气对平均粒径为0.5mm砂石进行了气力输送试验,对气固两相分支管道输送的阻力性能进行了研究。试验结果表明,在发送压力基本保持不变的情况下,当输送气速下降时各分支管的单位长度压差在开始时逐渐减小;但当气速下降到一定程度后,单位长度压差下降趋势减缓,其中局部阻力相对较大的分支管路则开始增大。当分支管流量控制阀开度差值由小变大时,两分支管各自的压差曲线逐渐远离,局部阻力较大的分支管路的临界速度增大。  相似文献   

14.
The online measurement of wet gas with extremely-low liquid loading (Lockhart-Martinelli parameter lower than 0.02) remains a challenge. In this study, three types of throttle devices, Venturi, orifice plate and cone, are compared experimentally with air-water two-phase flow in a horizontal pipe of inner diameter of 50 mm. High-precision correlations are established to measure the gas and liquid flowrates via a single throttle device. Results show that the two-phase mass flow coefficient (K) of the three throttle devices all increase linearly with the liquid densiometric Froude number and the K correlations are established respectively to correct the gas mass flowrate deviation. The pressure loss ratio (δ) for Venturi is sensitive and monotonous to the liquid loading, which contributes to the high accuracy of liquid flowrate measurement. By incorporating the K correlations, both the gas and liquid mass flowrates can be predicted precisely. The relative error of the gas mass flowrate predicted by the Venturi is within ±2.0% at 95% confidence level, and that of the liquid mass flowrate is within ±15% at 90% confidence level.  相似文献   

15.
在水平T型分支管道中,用压缩空气对平均粒径为0.25 mm的砂石进行气力输送试验。试验结果表明,在发送压力保持不变的情况下,输送气速和分支管路流量控制阀开度差值的变化,对分支管各自的阻力特性和相互间的压差有显著影响。当输送气速下降时,两分支管相互间的压差减小,各分支管的单位长度压差在开始时逐渐减小,但当气速下降到一定程度后,单位长度压差转而增大。当分支管流量控制阀开度差值由小变大时,两分支管各自的压差曲线逐渐远离,且两分支管相互间的压差逐渐增大。  相似文献   

16.
An ultrasonic flow meter for small pipes is presented. For metal pipe diameter smaller than 10 mm, clamp-on ultrasonic contrapropagation flow meters may encounter difficulties if cross talk or the short acoustic path contributes to large uncertainty in transit time measurement. Axial inline flow meters can avoid these problems, but they may introduce other problems if the transducer port is not properly positioned. Three types of pipe connecting tees are compared using the computational fluid dynamics (CFD) method. CFD shows the 45° tee has more uniform velocity distribution over the measuring section. A prototype flow meter using the 45° tee was designed and tested. The zero flow experiment shows the flow meter has a maximum of 0.002 m∕s shift over 24 h. The flow meter is calibrated by only 1 meter factor. After calibration, inaccuracy lower than 0.1% of reading was achieved in the laboratory, for a measuring range from 15 to 150 g∕s (0.29 to 2.99 m∕s; Re = 2688 to 26,876).  相似文献   

17.
Numerous measurements of the effects of pipe fittngs on vortex shedding flowmeters are carried out as a contribution to flow metering standards. A water test line of 150 mm diameter is used in the experiments covering a Reynolds number range of about 2 × 105 to 106. The effects of six kinds of piping configurations are examined at various upstream straight pipe lengths and all four kinds of liquid vortex shedding flowmeters, which were commercially available in Japan, are tested. The vortex shedding flowmeters are compared with a turbine meter in experiments designed to evaluate reproducibility of measurements. The uncertainty of the measured data is estimated at about 0.1%. It is found that the magnitude of each installation effect strongly depends on the design of the flowmeter. The experimental results are presented in detail and a table is given of the minimum upstream straight pipe lengths needed to suppress the effects to less than 0.5% for each of the tested flowmeters. This can be used as guidance in the installation of vortex shedding flowmeters.  相似文献   

18.
林棋  娄晨 《压力容器》2014,(2):29-37
基于ANSYS-CFX商业模拟软件,对差压式孔板流量计的内部流场进行数值模拟研究。计算了关于孔板流量计流出系数的4个主要影响因素:流量、粘度、缩径孔厚度及截面比,得到了不同模拟工况下的内部流场变化规律,同时借助数值模拟探讨了孔板流量计的冲蚀问题。将数值模拟流出系数计算值与基本经验公式编程计算值进行对比验证,结果显示两者吻合度高,误差基本控制在5%以内。研究表明,数值模拟可作为一种孔板流量计设计及标定的辅助方法。  相似文献   

19.
为了探索混输管线液量改变瞬变过程压力、压差的变化规律,在长378m、内径80mm的水平不锈钢试验环道上利用空气和水进行了段塞流液量改变瞬变试验研究。试验采用压力变送器测量压力信号,将相邻两压力信号相减(上游减下游)得到压差信号。根据试验结果,分析了液量改变瞬变过程中压力、压差的变化规律,对瞬变过程中的各种现象进行了详细分析和合理解释,从概率密度分布和功率谱密度两方面对压力、压差信号进行了统计分析。  相似文献   

20.
The most common method to predict the gas and liquid flow rates in a wet gas flow simultaneously is to use dual pressure drops (dual-DPs) from two or even one single DP meter. In this paper, the metering mechanism of applying dual-DPs were overviewed. To fully understand the response of DP meters to wet gas flows, the pressure drops of wet gas flow with ultra-low liquid loading through three typical DP meters were experimentally investigated, including an orifice plate meter, a cone meter and a Venturi meter. The equivalent diameter ratio is 0.45. The experimental fluids are air and tap water. The pressure is in the range of 0.1–0.3 MPa and the Lockhart-Martinelli parameter (XLM) is less than approximately 0.02. The results show that the upstream-throat pressure drop, the downstream-throat pressure drop and the permanent pressure loss of individual DP meters have unique response to liquid loading. The upstream-throat pressure drop of the orifice plate meter decreases at first and then increases as the liquid loading increases, while that of the cone meter and the Venturi meter increase monotonically. The non-monotonicity of the pressure drop for the orifice plate meter can be attributed to the flow modulation of trace liquid. The downstream-throat pressure drops of all the three test sections decrease at first and then increase. The reason is that the liquid presence in a gas flow increases the downstream friction and vortex dissipation. The permanent pressure loss of the orifice plate meter also shows non-monotonicity. To avoid non-monotonicity, the pressure loss ratio is introduced, which is defined as the ratio of the permanent pressure loss to the upstream-throat pressure drop. Results show that the pressure loss ratio of the Venturi meter has the highest sensitivity to the liquid loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号