共查询到18条相似文献,搜索用时 46 毫秒
1.
基于非下采样Contourlet变换系数直方图匹配的自适应图像增强 总被引:1,自引:0,他引:1
由于非下采样Contourlet变换(NSCT)域图像增强方法需要手动调节参数,无法实现自适应增强,本文将直方图均衡化和NSCT域增强相结合,提出了一种基于NSCT系数直方图匹配的自适应图像增强算法。该算法首先对低对比度含噪原图像进行直方图均衡化,然后对原图和直方图均衡化后的图像分别进行NSCT分解,得到低频子带系数和各高频方向子带系数。对低频子带,将原图的低频子带系数直方图匹配到直方图均衡化后图像的对应系数直方图上。对各个高频子带,则先进行阈值去噪,再将原图的各个高频子带系数直方图匹配到直方图均衡化后图像的对应系数直方图上。最后,经NSCT重构得到增强后的最终图像。实验结果表明,本文方法增强效果明显优于直方图均衡化,与Contourlet变换增强法相比,实验所采用的两组图像的图像评价函数(EMEE)值分别提高了24.05%、16.97%、13.29%和20.63%,且与NSCT域非自适应增强法(人工选取参数)的处理效果相当。该方法无需手工调节参数,具有自适应性和实用性强的优点。 相似文献
2.
3.
4.
介绍了非下采样Contourlet变换并将其应用于织物疵点检测。首先对织物疵点图像进行两级非下采样Contourlet变换,得到1个低频子带和12个高频子带;然后对低频子带采用非线性增益函数进行增强及二值化处理;通过计算对比度在高频子带中挑选出4个最优子带进行去噪和二值化处理;最后将经上述处理后的低频子带与最优高频子带进行融合,以二值图像的方式将疵点与织物背景相分离。实验结果表明该方法具有较强的适应性、实时性和较高的疵点检测率。 相似文献
5.
6.
基于无下采样Contourlet变换的SAR图像去噪 总被引:1,自引:0,他引:1
提出了一种基于无下采样Contourlet变换(NSCT)的合成孔径雷达(SAR)图像去噪方法.首次在理论上证实了SAR图像取对数后无下采样Contourlet系数服从广义高斯分布,从而提出采用贝叶斯阈值方法估计不含噪声的无下采样Contourlet系数,达到去除噪声的目的.仿真和实际实验结果表明,该方法在噪声平滑、边缘和纹理保护等方面优于其他方法.由于无下采样Contourlet变换不进行下采样,该方法能够避免其他进行严格下采样的变换去噪时所引入的人工痕迹. 相似文献
7.
8.
4f系统同时具有噪声和低通特性,为实现对其输出图像降噪的同时保护图像细节,提出一种结合图像纹理连续性的非下采样轮廓波变换域去噪方法。在传统NSCT域硬阈值去噪方法基础上,首先,对高频子带图像用一个衰减的阈值去除小幅值的噪声点,以更多地保护图像细节并凸显剩下的大幅值噪声点的孤立性。然后,利用图像细节纹理连续性分布和剩下的大幅值噪声点孤立分布的区别分离余下的图像细节和噪声点,进一步实现去噪的同时更好地保护图像细节的目的。实验结果表明,与传统方法相比,该方法峰值信噪比(PSNR)提高了0.5~1dB,结构相似度指数(SSIM)提高了3%~5%,因此能更好地保护图像细节,视觉边缘效果更清晰。 相似文献
9.
4f系统同时有噪声和低通特性,为对其输出图像除噪的同时保护图像细节,提出一种结合图像纹理连续性的NSCT域去噪方法。在传统NSCT域硬阈值去噪方法基础上,首先对高频子带图像用较小的阈值去除小幅值的噪声点,以更多的保护图像细节并凸显剩下的大幅值噪声点的孤立性,再利用图像纹理的连续性区分剩下的连续图像细节和孤立噪声点,以实现去噪的同时更好地保护细节的目的。实验表明,该方法在去噪方面可以达到与传统方法相当的程度,同时在保护图像细节方面有更优的表现,从视觉效果和数值评判标准两方面都有明显提高,适合4f系统图像类需要格外保护图像细节的场合。 相似文献
10.
基于Contourlet变换遥感图像增强 总被引:2,自引:1,他引:2
摘要:提出一种基于Contourlet变换的空间域增强和变换域增强相结合的遥感图像增强算法。首先对原图像进行拉普拉斯塔式变换(LP)得到原图像的细节图像并将它和原图像线性相加实现空间域增强;然后对空间域增强后的图像进行Contourlet变换得到不同尺度和不同方向上的变换系数,构造非线性增强函数对变换系数做增强处理实现变换域增强;最后对增强处理后的变换系数进行Contourlet反变换,实现最终的图像增强。试验结果表明:与应用于遥感图像传统增强算法相比,此算法可以得到更好的增强效果。 相似文献
11.
为有效抑制超声仪器成像中固有的斑点噪声,提出了一种基于非降采样Contourlet变换(nonsubsampled Contourlettransform,NSCT)域中边缘信号系数区提取和最小均方误差(minimum mean square error,MMSE)估计的超声图像的降噪算法。根据NSCT变换的细节信息刻画能力和平移不变性,对其各高频子带中系数进行分类,提取出边缘信号和平缓信号系数区;对超声图像的乘性斑点噪声进行推导研究,在边缘信号系数区和平缓信号系数区,根据各自噪声项的性质分别得出满足贝叶斯最小均方误差估计的降噪滤波方程;最后,对降噪后的系数进行NSCT反变换重建得到降噪图像。仿真图像和临床超声图像的实验结果证实,该算法与传统方法相比,不但能更有效地对斑点噪声进行抑制,也更好地保留了图像的细节信息。 相似文献
12.
针对抗混叠轮廓波变换缺乏平移不变性的缺陷,构造出具有近似移不变性的抗混叠轮廓波变换。在此基础上,在变换域提出一种混合统计模型图像降噪方法。该方法充分利用变换域信号系数层间层内相关性强、噪声系数无层内相关性且在小尺度下存在较强的假层间相关性的特点,采用混合统计模型对小尺度信号系数进行估计,从而避免了非高斯双变量模型放大噪声系数的风险。实验结果表明,提出的去噪法能克服轮廓波变换中的频谱混叠,避免重构图像出现划痕和边缘模糊现象,得到的峰值信噪比(PSNR)值分别比轮廓波硬阈值去噪、轮廓波变换域HMT去噪和抗混叠轮廓波变换域硬阈值去噪平均高2.87,1.32和1.36 dB,在有效去噪的同时,具有较好的图像边缘和细节保护能力。 相似文献
13.
抗混叠Curvelet变换非高斯双变量模型图像降噪 总被引:3,自引:1,他引:2
提出了一种基于非高斯双变量模型复数Curvelet变换的图像降噪新方法.采用具有近似移不变性的复数小波变换代替原Curvelet变换中的小波变换,并用改进的Radon变换避免了原Radon变换中一维傅里叶反变换在频域中采样不足的缺陷,从而保证了新的复数Curvelet变换具有抗混叠性能.充分利用信号系数层间相关性强而噪声系数层间相关性弱的特点,采用非高斯双变量对复数Curvelet变换域系数进行建模,并通过Bayesian MAP估计器对信号系数进行估计,从而实现降噪目的.实验结果表明,本文去噪法得到的峰值信噪比(PSNR)分别比传统Curvelet去噪法和Curvelet域HMT去噪法平均提高2.9 dB和1.5 dB,且能避免重构图像中出现"划痕"和"嵌入污点",在有效去噪的同时,可较好地保护图像边缘和细节. 相似文献
14.
15.
改进拉普拉斯能量和的尖锐频率局部化Contourlet域多聚焦图像融合方法 总被引:5,自引:0,他引:5
为了克服Contourlet融合在远离支撑区间上出现的混叠成分,抑制融合图像在奇异处产生伪吉布斯现象,提出了改进拉普拉斯能量和的尖锐频率局部化Contourlet(SFLCT)域多聚焦图像融合方法。采用SFLCT而不是原始的Cont-ourlet对多聚焦图像进行分解,并将多聚焦图像空域融合方法中评价图像清晰度的指标引入到SFLCT变换域,用拉普拉斯能量来选择变换域系数。然后,逆SFLCT重构得到融合结果。最后,采用循环平移来提高SFLCT的平移不变性,有效抑制融合图像在奇异处产生伪吉布斯现象。实验结果表明:对于多聚焦图像,所提方法比循环平移小波变换法的互信息提高了5.87%,QAB/F提高了2.70%,比循环平移Contourlet方法的互信息提高了1.77%,QAB/F提高了1.29%;视觉效果优于典型的空域分块拉普拉斯能量方法和平移不变小波变换方法。 相似文献
16.
针对轮廓波变换存在频谱混叠致使其难以获得理想的去噪效果这一问题,本文提出一种基于抗混叠轮廓波变换系数分类的混合模型图像降噪算法.该算法通过计算变换系数的尺度间相关性,将系数分为重要系数和非重要系数两类,并对二者分别采用广义非高斯二元变量分布与零均值高斯分布建模,在Bayes框架下对原始图像进行估计.实验研究结果表明,以Barbara图像为例,当噪声方差σ=30时,本文算法不仅峰值信噪比(PSNR)超过Contourlet-HMT模型去噪2.72 dB,且主观视觉效果上亦均优后者,同时还具有较高的计算效率. 相似文献
17.
提出基于多尺度变换和区域相结合的红外与可见光图像融合方法,用于有效保留红外图像与可见光图像中的空间信息及热目标信息,提升融合图像的可观测性和可理解性。首先,基于非采样Contourlet变换(NSCT)方法对红外和可见光图像进行初步融合,采用基于局部能量的规则融合低通子带系数,根据尺度内各方向子带的相关性原则融合带通方向子带系数。然后,计算初次融合后所得的融合图像与源图像的结构相似性(SSIM),根据源图像与初次融合图像的结构相似程度对图像进行区域分类,得到相似区域分类标识图。最后,依据区域内各自的相似度特性,分别采用不同的融合策略进行二次融合,从而得到最终的融合结果。实验结果表明:该方法能够充分提取源图像的区域特征和纹理特征,融合结果在主观和客观评价上均优于目前流行的融合方法。与仅使用NSCT法进行融合相比,实验所采用的两组图像的质量评价指标分别提高了16%、85%、54%、36%和18%、102%、84%、41%。表明该方法在主客观评价上均优于双树复杂小波变换(DTCWT)、NSCT、冗余离散小波变换(RDWT)等方法。 相似文献
18.
小波图像去噪已经成为目前图像去噪的主要方法之一。该文尝试把小波变换与自适应中值滤波这两种去噪方法相结合,对同时含有高斯噪声和椒盐噪声的图像进行了去噪研究。实验结果表明,此方法在去除噪声的同时也较好地保留了原始图像的边缘信息,效果不仅优于单一的小波变换或普通中值滤波的方法,更优于将小波变换与普通中值滤波相结合的方法。 相似文献