首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对目前服务机器人手势交互方法在输入方式自然性和识别方法可靠性方面的不足,提出采用结合人脸和人手的姿态作为输入方式,实现了一个基于最优有向无环图支持向量机(DAGSVM)的手势识别系统。系统采用分步细化特征检测过程,即先粗检肤色,然后分别利用人眼Gabor特征和人手边缘小波矩特征检测脸和手部,可克服背景中的肤色干扰,并显著提高特征提取的可靠性;综合利用脸手区域不变矩和手的位置信息组成混合特征向量,采用优化拓扑排序策略组织多个两分类支持向量机(SVM),构成最优DAGSVM多分类器,达到比普通DAGSVM更高的多分类准确率。实验验证了该方法的有效性和可靠性,并用于实现一种自然友好的人机交互方式。  相似文献   

2.
将归一化中心矩和DAGSVM相结合应用于机器人人机交互中的手势识别。归一化中心矩作为手势特征具有平移和比例不变性,同时对方向变化比较敏感,这正是机器人识别不同指向的手势时特征所需具有的特性,然后,将这个手势特征向量输入到DAGSVM分类器进行分类识别。实验结果表明,该方法能够有效地识别手势,且用于控制机器人运动效果良好。  相似文献   

3.
蔡军  李晓娟  张毅  罗元 《控制工程》2013,20(5):957-959
在支持向量机多分类方法基础上,提出了一种改进的有向无环图支持向量机( Directed Acyclic Graph Support Vector Machine,DAGSVM) 手势识别方法。首先根据Kinect 采集到 的场景深度信息将前景和背景分开,分割得到手,然后提取其特征向量,利用特征向量训练多 个SVM 两分类器,采用DAG 拓扑结构构成DAGSVM 多分类器,并对其结构排序进行改进。 实验证明,与其他支持向量机多分类方法相比,改进后的DAGSVM 分类器能够达到更高的识 别率,并将这个手势识别方法用于智能轮椅的控制上,收到了良好的效果。  相似文献   

4.
选取Hu不变矩、手势轮廓的凹陷个数及其周长与面积比为手势识别的主要特征,采用了基于径向基核的SVM分类器进行0~9十种手势的识别。实验结果表明,在背景单一、光照情况良好条件下,该方法具有很高的识别率,并且简单快速。  相似文献   

5.
为了实现机器人在人机交互过程中的触觉感知,提出了一种用于服务机器人的触觉手势识别方法。首先,将电子皮肤安装在服务机器人上,通过采集15位被试者的10种手势动作信号,构建了情感手势数据集。然后,使用时空分离卷积神经网络,对被试者触摸服务机器人时做出的触摸手势进行分类。结果表明,被试内手势识别率为90.25%,跨被试手势识别率为83.44%。通过调节模型中的时空通道调节因子,在几乎不降低识别率的同时,可以大幅减少模型参数量。基于电子皮肤的触觉手势识别实验,初步认为使用时空分离卷积神经网络能够以较高的准确率和较低的计算代价实现对人的触觉手势识别,这为服务机器人通过电子皮肤与人实现情感交互提供了可能。  相似文献   

6.
针对传统机器视觉的手势识别方法识别准确率低,抗干扰能力差等问题,提出了一种基于支持向量机(Support Vector Machine, SVM)手势分割和迁移学习的静态手势识别方法.本文使用SVM和迁移学习方法相结合构建新的手势识别模型,利用SVM对样本进行手势分割,将Inception-v3模型作为卷积神经网络模型基础,对网络参数进行fine-tuning,将预先经过手势分割处理后的样本导入模型训练,调整超参数得到新的最优手势识别模型,并在一定干扰环境下测试,得到测试结果.测试结果表明该方法识别准确率和实时反馈效率均高于传统方法,能高效识别手势,满足实际应用需求.  相似文献   

7.
基于Kinect深度信息的手势提取与识别研究   总被引:3,自引:0,他引:3  
针对基于视觉的手势识别技术对环境背景要求较高的问题,提出了一种使用深度信息进行手势提取和识别的研究方案。采用了微软Kinect摄像头进行手势深度图的采集,再将深度图转换为三维点云,根据深度信息过滤来提取手势数据。对手势数据进行方向校正后统计手势数据中深度信息的区间分布特征并输入到支持向量机进行训练,从而实现了对数字手势1~5的手势识别。实验结果证明,该手势识别方案的平均识别率达到95%,使用设备简单且精度较高,鲁棒性较好。  相似文献   

8.
《微型机与应用》2019,(3):30-34
手势识别技术在人机交互系统中的需求与应用日益广泛,毫米波雷达可以对手势运动过程中的距离、速度信息进行检测,从而实现识别的目的,且具有不依赖于光线的优点。利用24 GHz微型雷达装置可接收手势信号,建立识别算法的样本库。对一维手势信号进行分段FFT运算,可将一维手势信号转化为二维的手势图像,转换后的图像不但含有运动过程中的幅度、速度信息,还包括手势运动过程中幅度与频谱的变化历程。由于每一次手势动作的不确定性,单一的物理特征统计方法很难进行判别,且识别率较差,利用机器学习SVM算法对手势信号进行学习与分类。实验结果表明,分段FFT信号处理方法结合SVM算法对手势分类的准确率达90. 25%,为手势识别算法提供了一种新的方法。  相似文献   

9.
传统输入设备无法满足人们的随意性输入需求。为此,提出一种基于陀螺仪传感器的三维手势识别方案。硬件架构由陀螺传感器信息采集模块、单片机信息处理模块以及射频无线传输模块组成。利用多功能滤波器进行数据预处理,设计一种基于角度的特征提取算法,提取三维手势特征。实验结果表明,该方案的平均识别率达到99.3%,能较好地实现3D空间的鼠标输入功能和键盘输入功能。  相似文献   

10.
任海鹏  马展峰 《自动化学报》2011,37(11):1407-1412
针对带钢表面缺陷识别问题,提出一种基于动态演化复杂网络特性的特征描述方法, 这些特征同时具有位移、旋转不变性、大小不变性、较强的抗干扰能力和鲁棒性,为 缺陷识别提供良好的分类特征;为了提高分类器的效率,应用主成分分析法 (Principal component analysis, PCA) 对复杂网络特 征向量进行特征降维处理;采用最优有向无环图支持向量机 (Directed acyclic graph support vector machine, DAG-SVM)算法进行缺陷分类.结果表明该方法识别率高而且识别速度快.  相似文献   

11.
基于视觉的手势识别技术   总被引:1,自引:0,他引:1  
近年来计算机已经成为人们日常生活的一部分,人们与计算机的交互也日益成为科研领域的热点。基于视觉的手势识别是实现新一代人机交互所不可缺少的一项关键技术,而手势识别的研究也可促进手语识别的发展,从而消除健全人与聋哑人之间的交流障碍,使他们能获得健全人的正常生活,帮忙他们参加社会的各项活动。文中介绍了手势识别方法的发展、手势识别的技术难点,具体阐述了基于视觉的手势识别系统原理和组成,手势的建模以及在手势识别中常用的技术方法。  相似文献   

12.
小波矩结合了矩特征和小波特征,既反映了图像的全局性信息,又反映了图像的局域性信息,并且具有旋转、平移和缩放不变性.利用小波矩与支持向量机进行目标识别,不但解决了图像识别中特征量随图像旋转、平移和缩放而变化的问题,而且提高了对近似物体的识别能力,是解决小样本、近似图像识别的有效方法.  相似文献   

13.
手势识别技术作为最有前景的一种自然人机交互模式已经成功应用于一些领域。可靠的手势识别技术多依赖特定的硬件实现,而这种自然交互模式的普及需要自然环境下基于普通摄像机的通用手势识别技术。研究了在普通摄像机下对各种复杂背景、不同光照条件的静态手势的分割和识别技术。首先采用一种邻域变换算法,克服不同光照强度对分割的影响,然后提出一种求最小平均Hausdorff距离区域的算法,克服不同手势形状、方向、尺度等对分割的干扰。手势分割实验结果证明提出的算法可以在各种复杂背景及不同光照条件下分割出手势区域,正确率达到99.8%。最后改进了序贯最小优化算法训练二叉树结构的支持向量机多分类器,对实验采集的各种自然条件下九类手势图像的平均识别率超过80%,证明了算法用作普通摄像机下通用人机交互模式的可行性。  相似文献   

14.
基于视觉的手势识别技术   总被引:4,自引:0,他引:4  
近年来计算机已经成为人们日常生活的一部分,人们与计算机的交互也日益成为科研领域的热点.基于视觉的手势识别是实现新一代人机交互所不可缺少的一项关键技术,而手势识别的研究也可促进手语识别的发展,从而消除健全人与聋哑人之间的交流障碍,使他们能获得健全人的正常生活,帮忙他们参加社会的各项活动.文中介绍了手势识别方法的发展、手势识别的技术难点,具体阐述了基于视觉的手势识别系统原理和组成,手势的建模以及在手势识别中常用的技术方法.  相似文献   

15.
本文主要研究支持向量机在手势识别中模型的选择,包括多类模型和核函数的选择,提出基于径向基核函数和一对一多类方法的支持向量机模型是最佳分类模型.实验结果表明该方法具有很高的识别率,并且简单快速,可以用于实时的手势识别系统中.  相似文献   

16.
针对用户与互动电视交互的需求,设计实现一种基于智能移动终端加速度传感器的手势交互系统。考虑到智能移动设备资源及计算能力有限的特点,采用简单高效的时域特征提取方法,对加速度信号进行平稳降噪、去冗余和归一化处理,并用SVM进行分类和识别。手势识别结果应用于基于Android平台的机顶盒原型系统,实现用户与电视的实时交互。实验结果表明该系统实现了电视常用手势的准确识别,识别率达到了96%,具有一定的实用价值。  相似文献   

17.
目的 基于手势的交互方式在人机交互中发挥着越来越重要的作用,手势识别是大多数手势交互系统的核心技术.当手势种类较多时,目前已有的大多数手势识别方法往往无法获得足够高的识别率.为此,提出了一种结合手指检测和梯度方向直方图(HOG)特征的分层静态手势识别方法.方法 提出一种基于形态学操作的手指检测算法作为手势识别方法的基础.首先由肤色模型从输入图像中提取出手部区域,然后利用手指检测算法识别出手势包含的手指个数,并根据手指个数从事先训练好的支持向量机分类器集合中选取一个,最后提取手部区域的HOG特征,并利用选择好的分类器完成识别任务.结果 对25种常用手势进行了识别实验,将本文方法与单独使用HOG特征的方法进行对比.本文方法可以将传统HOG方法的识别率提高20%左右.结论 基于手指个数的分层识别策略可以有效地解决传统单层识别方法在手势种类较多时识别率不高的问题.在手部区域能被成功检测的情况下,提出的结合手指检测和HOG特征的方法可以取得较理想的手势识别结果,且能达到实时性要求.  相似文献   

18.
在基于支持向量机的多分类算法中,一对一算法表现出较好的性能.然而此算法却存在不可分区域,落入该区域的样本不能有效被识别,因此影响了一对一算法的性能.为解决这个难题,提出交互迭代一对一分类算法,同时给出算法的有效性分析和计算复杂度证明.为了验证该算法解决不可分区域的能力,我们选用UCI数据集来做对比实验.实验结果显示,本文算法不但可以较成功解决不可分区域问题而且表现出比其它算法更好的性能.  相似文献   

19.
基于手机手势识别的媒体控制界面   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种能够识别通过手机示意的自然手势、进而控制媒体播放的通用型人机界面。用户通过挥动个人的手机表达操作意图,由手机内置三轴加速度传感器获取相应的手势数据,采用动态时间弯曲等多种算法对用户的手势进行识别,实现对多媒体播放的通用控制。实验结果表明,该界面对手机的几种通用手势均能获得较高的识别率,能在实际应用中对媒体进行简单、方便的控制。  相似文献   

20.
针对基于普通摄像头的手势识别系统在不同光照条件和复杂环境下易受影响的问题,提出一种基于kinect深度图像进行指尖检测和手势识别的算法. 首先利用Kinect传感器获取深度图像,再利用OpenNI手部跟踪器检测出手部的位置,根据手部位置对手势进行深度阈值分割. 提出一种结合凸包和曲率检测指尖的算法,检测出指尖数目和位置后,计算出包括指尖和手掌水平方向的夹角、相邻两个指尖夹角以及指尖与掌心的距离的特征向量,最后利用支持向量机(SVM)对预定的9种数字手势进行识别. 实验邀请5位实验者在复杂环境下每个手势做30次,每次的手势角度不同,实验结果表明该方法能够准确检测出指尖的数目和位置,9种数字手势平均识别率达到97.1%,该方法使用特征简单,实时性好,有较好的鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号