共查询到20条相似文献,搜索用时 15 毫秒
1.
Chandrashekara R Mohiaddin RH Rueckert D 《IEEE transactions on medical imaging》2004,23(10):1245-1250
Tagged magnetic resonance imaging (MRI) is unique in its ability to noninvasively image the motion and deformation of the heart in vivo, but one of the fundamental reasons limiting its use in the clinical environment is the absence of automated tools to derive clinically useful information from tagged MR images. In this paper, we present a novel and fully automated technique based on nonrigid image registration using multilevel free-form deformations (MFFDs) for the analysis of myocardial motion using tagged MRI. The novel aspect of our technique is its integrated nature for tag localization and deformation field reconstruction using image registration and voxel based similarity measures. To extract the motion field within the myocardium during systole we register a sequence of images taken during systole to a set of reference images taken at end-diastole, maximizing the normalized mutual information between the images. We use both short-axis and long-axis images of the heart to estimate the full four-dimensional motion field within the myocardium. We also present validation results from data acquired from twelve volunteers. 相似文献
2.
Rapid elastic image registration for 3-D ultrasound 总被引:7,自引:0,他引:7
Krücker JF LeCarpentier GL Fowlkes JB Carson PL 《IEEE transactions on medical imaging》2002,21(11):1384-1394
A Subvolume-based algorithm for elastic Ultrasound REgistration (SURE) was developed and evaluated. Designed primarily to improve spatial resolution in three-dimensional compound imaging, the algorithm registers individual image volumes nonlinearly before combination into compound volumes. SURE works in one or two stages, optionally using MIAMI Fuse software first to determine a global affine registration before iteratively dividing the volume into subvolumes and computing local rigid registrations in the second stage. Connectivity of the entire volume is ensured by global interpolation using thin-plate splines after each iteration. The performance of SURE was quantified in 20 synthetically deformed in vivo ultrasound volumes, and in two phantom scans, one of which was distorted at acquisition by placing an aberrating layer in the sound path. The aberrating layer was designed to induce beam aberrations reported for the female breast. Synthetic deformations of 1.5-2.5 mm were reduced by over 85% when SURE was applied to register the distorted image volumes with the original ones. Registration times were below 5 min on a 500-MHz CPU for an average data set size of 13 MB. In the aberrated phantom scans, SURE reduced the average deformation between the two volumes from 1.01 to 0.30 mm. This was a statistically significant (P = 0.01) improvement over rigid and affine registration transformations, which produced reductions to 0.59 and 0.50 mm, respectively. 相似文献
3.
Xiao G Brady JM Noble JA Burcher M English R 《IEEE transactions on medical imaging》2002,21(4):405-412
Three-dimensional (3-D) ultrasound imaging of the breast enables better assessment of diseases than conventional two-dimensional (2-D) imaging. Free-hand techniques are often used for generating 3-D data from a sequence of 2-D slice images. However, the breast deforms substantially during scanning because it is composed primarily of soft tissue. This often causes tissue mis-registration in spatial compounding of multiple scan sweeps. To overcome this problem, in this paper, instead of introducing additional constraints on scanning conditions, we use image processing techniques. We present a fully automatic algorithm for 3-D nonlinear registration of free-hand ultrasound data. It uses a block matching scheme and local statistics to estimate local tissue deformation. A Bayesian regularization method is applied to the sample displacement field. The final deformation field is obtained by fitting a B-spline approximating mesh to the sample displacement field. Registration accuracy is evaluated using phantom data and similar registration errors are achieved with (0.19 mm) and without (0.16 mm) gaps in the data. Experimental results show that registration is crucial in spatial compounding of different sweeps. The execution time of the method on moderate hardware is sufficiently fast for fairly large research studies. 相似文献
4.
Shi W Zhuang X Wang H Duckett S Luong DV Tobon-Gomez C Tung K Edwards PJ Rhode KS Razavi RS Ourselin S Rueckert D 《IEEE transactions on medical imaging》2012,31(6):1263-1275
In this paper, we present a novel technique based on nonrigid image registration for myocardial motion estimation using both untagged and 3-D tagged MR images. The novel aspect of our technique is its simultaneous usage of complementary information from both untagged and 3-D tagged MR images. To estimate the motion within the myocardium, we register a sequence of tagged and untagged MR images during the cardiac cycle to a set of reference tagged and untagged MR images at end-diastole. The similarity measure is spatially weighted to maximize the utility of information from both images. In addition, the proposed approach integrates a valve plane tracker and adaptive incompressibility into the framework. We have evaluated the proposed approach on 12 subjects. Our results show a clear improvement in terms of accuracy compared to approaches that use either 3-D tagged or untagged MR image information alone. The relative error compared to manually tracked landmarks is less than 15% throughout the cardiac cycle. Finally, we demonstrate the automatic analysis of cardiac function from the myocardial deformation fields. 相似文献
5.
Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method. 相似文献
6.
Ledesma-Carbayo MJ Kybic J Desco M Santos A Sühling M Hunziker P Unser M 《IEEE transactions on medical imaging》2005,24(9):1113-1126
We propose a new spatio-temporal elastic registration algorithm for motion reconstruction from a series of images. The specific application is to estimate displacement fields from two-dimensional ultrasound sequences of the heart. The basic idea is to find a spatio-temporal deformation field that effectively compensates for the motion by minimizing a difference with respect to a reference frame. The key feature of our method is the use of a semi-local spatio-temporal parametric model for the deformation using splines, and the reformulation of the registration task as a global optimization problem. The scale of the spline model controls the smoothness of the displacement field. Our algorithm uses a multiresolution optimization strategy to obtain a higher speed and robustness. We evaluated the accuracy of our algorithm using a synthetic sequence generated with an ultrasound simulation package, together with a realistic cardiac motion model. We compared our new global multiframe approach with a previous method based on pairwise registration of consecutive frames to demonstrate the benefits of introducing temporal consistency. Finally, we applied the algorithm to the regional analysis of the left ventricle. Displacement and strain parameters were evaluated showing significant differences between the normal and pathological segments, thereby illustrating the clinical applicability of our method. 相似文献
7.
Transformation functions play a major role in nonrigid image registration. In this paper, the characteristics of thin-plate spline (TPS), multiquadric (MQ), piecewise linear (PL), and weighted mean (WM) transformations are explored and their performances in nonrigid image registration are compared. TPS and MQ are found to be most suitable when the set of control-point correspondences is not large (fewer than a thousand) and variation in spacing between the control points is not large. When spacing between the control points varies greatly, PL is found to produce a more accurate registration than TPS and MQ. When a very large set of control points is given and the control points contain positional inaccuracies, WM is preferred over TPS, MQ, and PL because it uses an averaging process that smoothes the noise and does not require the solution of a very large system of equations. Use of transformation functions in the detection of incorrect correspondences is also discussed. 相似文献
8.
Reconstruction and quantification of the carotid artery bifurcation from 3-D ultrasound images 总被引:4,自引:0,他引:4
Barratt DC Ariff BB Humphries KN Thom SA Hughes AD 《IEEE transactions on medical imaging》2004,23(5):567-583
Three-dimensional (3-D) ultrasound is a relatively new technique, which is well suited to imaging superficial blood vessels, and potentially provides a useful, noninvasive method for generating anatomically realistic 3-D models of the peripheral vasculature. Such models are essential for accurate simulation of blood flow using computational fluid dynamics (CFD), but may also be used to quantify atherosclerotic plaque more comprehensively than routine clinical methods. In this paper, we present a spline-based method for reconstructing the normal and diseased carotid artery bifurcation from images acquired using a freehand 3-D ultrasound system. The vessel wall (intima-media interface) and lumen surfaces are represented by a geometric model defined using smoothing splines. Using this coupled wall-lumen model, we demonstrate how plaque may be analyzed automatically to provide a comprehensive set of quantitative measures of size and shape, including established clinical measures, such as degree of (diameter) stenosis. The geometric accuracy of 3-D ultrasound reconstruction is assessed using pulsatile phantoms of the carotid bifurcation, and we conclude by demonstrating the in vivo application of the algorithms outlined to 3-D ultrasound scans from a series of patient carotid arteries. 相似文献
9.
Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use. 相似文献
10.
Validation of nonrigid image registration using finite-element methods: application to breast MR images 总被引:5,自引:0,他引:5
Schnabel JA Tanner C Castellano-Smith AD Degenhard A Leach MO Hose DR Hill DL Hawkes DJ 《IEEE transactions on medical imaging》2003,22(2):238-247
This paper presents a novel method for validation of nonrigid medical image registration. This method is based on the simulation of physically plausible, biomechanical tissue deformations using finite-element methods. Applying a range of displacements to finite-element models of different patient anatomies generates model solutions which simulate gold standard deformations. From these solutions, deformed images are generated with a range of deformations typical of those likely to occur in vivo. The registration accuracy with respect to the finite-element simulations is quantified by co-registering the deformed images with the original images and comparing the recovered voxel displacements with the biomechanically simulated ones. The functionality of the validation method is demonstrated for a previously described nonrigid image registration technique based on free-form deformations using B-splines and normalized mutual information as a voxel similarity measure, with an application to contrast-enhanced magnetic resonance mammography image pairs. The exemplar nonrigid registration technique is shown to be of subvoxel accuracy on average for this particular application. The validation method presented here is an important step toward more generic simulations of biomechanically plausible tissue deformations and quantification of tissue motion recovery using nonrigid image registration. It will provide a basis for improving and comparing different nonrigid registration techniques for a diversity of medical applications, such as intrasubject tissue deformation or motion correction in the brain, liver or heart. 相似文献
11.
We investigated the registration of ultrasound volumes based on the mutual information measure, a technique originally applied to multimodality registration of brain images. A prerequisite for successful registration is a smooth, quasi-convex mutual information surface with an unambiguous maximum. We discuss the necessary preprocessing to create such a surface for ultrasound volumes. Abdominal and thoracic organs imaged with ultrasound typically move relative to the exterior of the body and are deformable. Consequently, four specific instances of image registration involving progressively generalized transformations were studied: rigid-body, rigid-body + uniform scaling, rigid-body + nonuniform scaling, and affine. Registration was applied to clinically acquired volumetric images. The accuracy was comparable with the voxel dimension for all transformation modes, although it degraded as the transformation grew more complex. Likewise, the capture range became narrower with the complexity of transformation. As the use of real-time three-dimensional ultrasound becomes more prevalent, the method we present should work well for a variety of applications examining serial anatomic and physiologic changes. Developers of these clinical applications would match the deformation model of their problem to one of the four transformation models presented here. 相似文献
12.
Robust weighted graph transformation matching for rigid and nonrigid image registration 总被引:2,自引:0,他引:2
This paper presents an automatic point matching algorithm for establishing accurate match correspondences in two or more images. The proposed algorithm utilizes a group of feature points to explore their geometrical relationship in a graph arrangement. The algorithm starts with a set of matches (including outliers) between the two images. A set of nondirectional graphs is then generated for each feature and its K nearest matches (chosen from the initial set). Using the angular distances between edges that connect a feature point to its K nearest neighbors in the graph, the algorithm finds a graph in the second image that is similar to the first graph. In the case of a graph including outliers, the algorithm removes such outliers (one by one, according to their strength) from the graph and re-evaluates the angles until the two graphs are matched or discarded. This is a simple intuitive and robust algorithm that is inspired by a previous work. Experimental results demonstrate the superior performance of this algorithm under various conditions, such as rigid and nonrigid transformations, ambiguity due to partial occlusions or match correspondence multiplicity, scale, and larger view variation. 相似文献
13.
3-D/2-D registration of CT and MR to X-ray images 总被引:6,自引:0,他引:6
A crucial part of image-guided therapy is registration of preoperative and intraoperative images, by which the precise position and orientation of the patient's anatomy is determined in three dimensions. This paper presents a novel approach to register three-dimensional (3-D) computed tomography (CT) or magnetic resonance (MR) images to one or more two-dimensional (2-D) X-ray images. The registration is based solely on the information present in 2-D and 3-D images. It does not require fiducial markers, intraoperative X-ray image segmentation, or timely construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3-D MR or CT data, and gradients of intraoperative X-ray images at locations defined by the X-ray source and 3-D surface points. The registration is concerned with finding the rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. We have thoroughly validated our registration method by using MR, CT, and X-ray images of a cadaveric lumbar spine phantom for which "gold standard" registration was established by means of fiducial markers, and its accuracy assessed by target registration error. Volumes of interest, containing single vertebrae L1-L5, were registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the "gold standard" position. CT/X-ray (MR/ X-ray) registration, which is fast, was successful in more than 91% (82% except for L1) of trials if started from the "gold standard" translated or rotated for less than 6 mm or 17 degrees (3 mm or 8.6 degrees), respectively. Root-mean-square target registration errors were below 0.5 mm for the CT to X-ray registration and below 1.4 mm for MR to X-ray registration. 相似文献
14.
Rigid registration of 3-D ultrasound with MR images: a new approachcombining intensity and gradient information 总被引:2,自引:0,他引:2
Roche A. Pennec X. Malandain G. Ayache N. 《IEEE transactions on medical imaging》2001,20(10):1038-1049
We present a new image-based technique to rigidly register intraoperative three-dimensional ultrasound (US) with preoperative magnetic resonance (MR) images. Automatic registration is achieved by maximization of a similarity measure which generalizes the correlation ratio, and whose novelty is to incorporate multivariate information from the MR data (intensity and gradient). In addition, the similarity measure is built upon a robust intensity-based distance measure, which makes it possible to handle a variety of US artifacts. A cross-validation study has been carried out using a number of phantom and clinical data. This indicates that the method is quite robust and that the worst registration errors are of the order of the MR image resolution. 相似文献
15.
Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration 总被引:9,自引:0,他引:9
In this paper, we show how the concept of statistical deformation models (SDMs) can be used for the construction of average models of the anatomy and their variability. SDMs are built by performing a statistical analysis of the deformations required to map anatomical features in one subject into the corresponding features in another subject. The concept of SDMs is similar to statistical shape models (SSMs) which capture statistical information about shapes across a population, but offers several advantages over SSMs. First, SDMs can be constructed directly from images such as three-dimensional (3-D) magnetic resonance (MR) or computer tomography volumes without the need for segmentation which is usually a prerequisite for the construction of SSMs. Instead, a nonrigid registration algorithm based on free-form deformations and normalized mutual information is used to compute the deformations required to establish dense correspondences between the reference subject and the subjects in the population class under investigation. Second, SDMs allow the construction of an atlas of the average anatomy as well as its variability across a population of subjects. Finally, SDMs take the 3-D nature of the underlying anatomy into account by analysing dense 3-D deformation fields rather than only information about the surface shape of anatomical structures. We show results for the construction of anatomical models of the brain from the MR images of 25 different subjects. The correspondences obtained by the nonrigid registration are evaluated using anatomical landmark locations and show an average error of 1.40 mm at these anatomical landmark positions. We also demonstrate that SDMs can be constructed so as to minimize the bias toward the chosen reference subject. 相似文献
16.
Holden M Hill DL Denton ER Jarosz JM Cox TC Rohlfing T Goodey J Hawkes DJ 《IEEE transactions on medical imaging》2000,19(2):94-102
The authors have evaluated eight different similarity measures used for rigid body registration of serial magnetic resonance (MR) brain scans. To assess their accuracy the authors used 33 clinical three-dimensional (3-D) serial MR images, with deformable extradural tissue excluded by manual segmentation and simulated 3-D MR images with added intensity distortion. For each measure the authors determined the consistency of registration transformations for both sets of segmented and unsegmented data. They have shown that of the eight measures tested, the ones based on joint entropy produced the best consistency. In particular, these measures seemed to be least sensitive to the presence of extradural tissue. For these data the difference in accuracy of these joint entropy measures, with or without brain segmentation, was within the threshold of visually detectable change in the difference images 相似文献
17.
Castro-Pareja C.R. Jagadeesh J.M. Shekhar R. 《IEEE transactions on information technology in biomedicine》2003,7(4):426-434
Mutual information-based image registration, shown to be effective in registering a range of medical images, is a computationally expensive process, with a typical execution time on the order of minutes on a modern single-processor computer. Accelerated execution of this process promises to enhance efficiency and therefore promote routine use of image registration clinically. This paper presents details of a hardware architecture for real-time three-dimensional (3-D) image registration. Real-time performance can be achieved by setting up a network of processing units, each with three independent memory buses: one each for the two image memories and one for the mutual histogram memory. Memory access parallelization and pipelining, by design, allow each processing unit to be 25 times faster than a processor with the same bus speed, when calculating mutual information using partial volume interpolation. Our architecture provides superior per-processor performance at a lower cost compared to a parallel supercomputer. 相似文献
18.
In this paper, we address a complex image registration issue arising while the dependencies between intensities of images to be registered are not spatially homogeneous. Such a situation is frequently encountered in medical imaging when a pathology present in one of the images modifies locally intensity dependencies observed on normal tissues. Usual image registration models, which are based on a single global intensity similarity criterion, fail to register such images, as they are blind to local deviations of intensity dependencies. Such a limitation is also encountered in contrast-enhanced images where there exist multiple pixel classes having different properties of contrast agent absorption. In this paper, we propose a new model in which the similarity criterion is adapted locally to images by classification of image intensity dependencies. Defined in a Bayesian framework, the similarity criterion is a mixture of probability distributions describing dependencies on two classes. The model also includes a class map which locates pixels of the two classes and weighs the two mixture components. The registration problem is formulated both as an energy minimization problem and as a maximum a posteriori estimation problem. It is solved using a gradient descent algorithm. In the problem formulation and resolution, the image deformation and the class map are estimated simultaneously, leading to an original combination of registration and classification that we call image classifying registration. Whenever sufficient information about class location is available in applications, the registration can also be performed on its own by fixing a given class map. Finally, we illustrate the interest of our model on two real applications from medical imaging: template-based segmentation of contrast-enhanced images and lesion detection in mammograms. We also conduct an evaluation of our model on simulated medical data and show its ability to take into account spatial variations of intensity dependencies while keeping a good registration accuracy. 相似文献
19.
Weese J. Penney G.P. Desmedt P. Buzug T.M. Hill D.L.G. Hawkes D.J. 《IEEE transactions on information technology in biomedicine》1997,1(4):284-293
Registration of intraoperative fluoroscopy images with preoperative 3D CT images can he used for several purposes in image-guided surgery. On the one hand, it can be used to display the position of surgical instruments, which are being tracked by a localizer, in the preoperative CT scan. On the other hand, the registration result can be used to project preoperative planning information or important anatomical structures visible in the CT image on to the fluoroscopy image. For this registration task, a novel voxel-based method in combination with a new similarity measure (pattern intensity) has been developed. The basic concept of the method is explained at the example of 2D/3D registration of a vertebra in an X-ray fluoroscopy image with a 3D CT image. The registration method is described, and the results for a spine phantom are presented and discussed. Registration has been carried out repeatedly with different starting estimates to study the capture range. Information about registration accuracy has been obtained by comparing the registration results with a highly accurate “ground-truth” registration, which has been derived from fiducial markers attached to the phantom prior to imaging. In addition, registration results for different vertebrae have been compared. The results show that the rotation parameters and the shifts parallel to the projection plane can accurately be determined from a single projection. Because of the projection geometry, the accuracy of the height above the projection plane is significantly lower 相似文献
20.
Registration of real-time 3-D ultrasound images of the heart for novel 3-D stress echocardiography 总被引:2,自引:0,他引:2
Shekhar R Zagrodsky V Garcia MJ Thomas JD 《IEEE transactions on medical imaging》2004,23(9):1141-1149
Stress echocardiography is a routinely used clinical procedure to diagnose cardiac dysfunction by comparing wall motion information in prestress and poststress ultrasound images. Incomplete data, complicated imaging protocols and misaligned prestress and poststress views, however, are known limitations of conventional stress echocardiography. We discuss how the first two limitations are overcome via the use of real-time three-dimensional (3-D) ultrasound imaging, an emerging modality, and have called the new procedure "3-D stress echocardiography." We also show that the problem of misaligned views can be solved by registration of prestress and poststress 3-D image sequences. Such images are misaligned because of variations in placing the ultrasound transducer and stress-induced anatomical changes. We have developed a technique to temporally align 3-D images of the two sequences first and then to spatially register them to rectify probe placement error while preserving the stress-induced changes. The 3-D spatial registration is mutual information-based. Image registration used in conjunction with 3-D stress echocardiography can potentially improve the diagnostic accuracy of stress testing. 相似文献