首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This paper proposes a power efficient multipath video packet scheduling scheme for minimum video distortion transmission (optimised Video QoS) over wireless multimedia sensor networks. The transmission of video packets over multiple paths in a wireless sensor network improves the aggregate data rate of the network and minimizes the traffic load handled by each node. However, due to the lossy behavior of the wireless channel the aggregate transmission rate cannot always support the requested video source data rate. In such cases a packet scheduling algorithm is applied that can selectively drop combinations of video packets prior to transmission to adapt the source requirements to the channel capacity. The scheduling algorithm selects the less important video packets to drop using a recursive distortion prediction model. This model predicts accurately the resulting video distortion in case of isolated errors, burst of errors and errors separated by a lag. Two scheduling algorithms are proposed in this paper. The Baseline scheme is a simplified scheduler that can only decide upon which packet can be dropped prior to transmission based on the packet’s impact on the video distortion. This algorithm is compared against the Power aware packet scheduling that is an extension of the Baseline capable of estimating the power that will be consumed by each node in every available path depending on its traffic load, during the transmission. The proposed Power aware packet scheduling is able to identify the available paths connecting the video source to the receiver and schedule the packet transmission among the selected paths according to the perceived video QoS (Peak Signal to Noise Ratio—PSNR) and the energy efficiency of the participating wireless video sensor nodes, by dropping packets if necessary based on the distortion prediction model. The simulation results indicate that the proposed Power aware video packet scheduling can achieve energy efficiency in the wireless multimedia sensor network by minimizing the power dissipation across all nodes, while the perceived video quality is kept to very high levels even at extreme network conditions (many sensor nodes dropped due to power consumption and high background noise in the channel).  相似文献   

2.
Packet networks are currently enabling the integration of traffic with a wide range of characteristics that extend from video traffic with stringent quality of service (QoS) requirements to the best‐effort traffic requiring no guarantees. QoS guarantees can be provided in conventional packet networks by the use of proper packet‐scheduling algorithms. As a computer revolution, many scheduling algorithms have been proposed to provide different schemes of QoS guarantees, with Earliest Deadline First (EDF) as the most popular one. With EDF scheduling, all flows receive the same miss rate regardless of their traffic characteristics and deadlines. This makes the standard EDF algorithm unsuitable for situations in which the different flows have different miss rate requirements since in order to meet all miss rate requirements it is necessary to limit admissions so as to satisfy the flow with the most stringent miss rate requirements. In this paper, we propose a new priority assignment scheduling algorithm, Hierarchal Diff‐EDF (Differentiate Earliest Deadline First), which can meet the real‐time needs of these applications while continuing to provide best‐effort service to non‐real time traffic. The Hierarchal Diff‐EDF features a feedback control mechanism that detects overload conditions and modifies packet priority assignments accordingly. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In delay tolerant Mobile Ad hoc Networks (MANETs) node mobility can be exploited in order to reduce the source–destination path lengths in the expense of higher packet delivery delays. This paper addresses the problem of minimizing the average source–destination path length under a maximum delay constraint for packet delivery which is desirable to certain applications. Imposing packet delivery deadlines results in a certain percentage of multi-hop packet transmissions and poses the practical problem of selecting the optimum moment for the transmission. We propose an Optimal Stopping Rule algorithm for solving this problem and show how this algorithm can be extended in the case that a source–destination route is not always available by relaxing the hard delay constraint to a soft (probabilistic) constraint. The performance of this algorithm is compared to the ideal case of scheduling with perfect knowledge of the future and the trade-off between higher allowable delay and lower average path length is illustrated through several Matlab and ns-2 simulation results. As an application of path length minimization we explain how this can lead to energy consumption minimization in a MANET with light traffic loads (low probability of collisions). Finally, we briefly discuss how this path length minimization algorithm can guide the development of cross-layer throughput maximization algorithms with soft maximum delay guarantees.  相似文献   

4.
This paper proposes a new multiuser scheduling algorithm that can simultaneously support a variety of different quality‐of‐service (QoS) user groups while satisfying fairness among users in the same QoS group in MIMO broadcast channels. Toward this goal, the proposed algorithm consists of two parts: a QoS‐aware fair (QF) scheduling within a QoS group and an antenna trade‐off scheme between different QoS groups. The proposed QF scheduling algorithm finds a user set from a certain QoS group which can satisfy the fairness among users in terms of throughput or delay. The antenna trade‐off scheme can minimize the QoS violations of a higher priority user group by trading off the number of transmit antennas allocated to different QoS groups. Numerical results demonstrate that the proposed QF scheduling method satisfies different types of fairness among users and can adjust the degree of fairness among them. The antenna trade‐off scheme combined with QF scheduling can improve the probability of QoS‐guaranteed transmission when supporting different QoS groups.  相似文献   

5.
Future-generation wireless packet networks will support multimedia applications with diverse QoS requirements. Much of the research on scheduling algorithms has been focused on hard QoS provisioning of integrated services. Although these algorithms give hard delay bounds, their stringent requirements sacrifice the potential statistical multiplexing performance and flexibility of the packet-switched network. Furthermore, the complexities of the algorithms often make them impractical for wireless networks. There is a need to develop a packet scheduling scheme for wireless packet-switched networks that provides soft QoS guarantees for heterogeneous traffic, and is also simple to implement and manage. This article proposes token bank fair queuing (TBFQ), a soft scheduling algorithm that possesses these qualities. This algorithm is work-conserving and has a complexity of O(1). We focus on packet scheduling on a reservation-based TDMA/TDD wireless channel to service integrated real-time traffic. The TBFQ scheduling mechanism integrates the policing and servicing functions, and keeps track of the usage of each connection. We address the impact of TBFQ on mean packet delay, violation probability, and bandwidth utilization. We also demonstrate that due to its soft provisioning capabilities, the TBFQ performs rather well even when traffic conditions deviate from the established contracts.  相似文献   

6.
Efficient utilization of network resources is a key goal for emerging broadband wireless access systems (BWAS). This is a complex goal to achieve due to the heterogeneous service nature and diverse quality of service (QoS) requirements of various applications that BWAS support. Packet scheduling is an important activity that affects BWAS QoS outcomes. This paper proposes a novel packet scheduling mechanism that improves QoS in mobile wireless networks which exploit IP as a transport technology for data transfer between BWAS base stations and mobile users at the radio transmission layer. In order to improve BWAS QoS the new packet algorithm makes changes at both the IP and the radio layers. The new packet scheduling algorithm exploits handoff priority scheduling principles and takes into account buffer occupancy and channel conditions. The packet scheduling mechanism also incorporates the concept of fairness. Performance results were obtained by computer simulation and compared to the well known algorithms. Results show that by exploiting the new packet scheduling algorithm, the transport system is able to provide a low handoff packet drop rate, low packet forwarding rate, low packet delay and ensure fairness amongst the users of different services.  相似文献   

7.
Streaming video over IP networks has become increasingly popular; however, compared to traditional data traffic, video streaming places different demands on quality of service (QoS) in a network, particularly in terms of delay, delay variation, and data loss. In response to the QoS demands of video applications, network techniques have been proposed to provide QoS within a network. Unfortunately, while efficient from a network perspective, most existing solutions have not provided end‐to‐end QoS that is satisfactory to users. In this paper, packet scheduling and end‐to‐end QoS distribution schemes are proposed to address this issue. The design and implementation of the two schemes are based on the active networking paradigm. In active networks, routers can perform user‐driven computation when forwarding packets, rather than just simple storing and forwarding packets, as in traditional networks. Both schemes thus take advantage of the capability of active networks enabling routers to adapt to the content of transmitted data and the QoS requirements of video users. In other words, packet scheduling at routers considers the correlation between video characteristics, available local resources and the resulting visual quality. The proposed QoS distribution scheme performs inter‐node adaptation, dynamically adjusting local loss constraints in response to network conditions in order to satisfy the end‐to‐end loss requirements. An active network‐based simulation shows that using QoS distribution and packet scheduling together increases the probability of meeting end‐to‐end QoS requirements of networked video. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we present a packet scheduling algorithm for a non-real-time service, with soft QoS requirements, which allows for degrading the QoS level, e.g., typically the packet delay, whenever necessary, in mobile broadband wireless Internet access systems. This algorithm is designed to properly trade off system throughput and delay performance, which can improve the system capacity by relaxing the delay constraint with respect to the underlying soft QoS requirement. This is as opposed to most of the existing packet scheduling algorithms for non-real-time service which are simply designed to maximize the system throughput without a delay constraint. The proposed adaptive exponential scheduling algorithm intentionally introduces additional delay to some users, especially under bad channel conditions, opportunistically allowing for serving users only under good channel conditions, as long as the resulting QoS degradation is acceptable for non-real-time service users. The results from a system-level simulation demonstrate that the system capacity can be significantly increased over existing algorithms, by as much as 65%, using the adaptive exponential scheduling algorithm while satisfying the given QoS-level requirements.  相似文献   

9.
该文提出了一种新的应用于IEEE 802.11e EDCA (Enhanced Distributed Channel Access)中提供QoS(Quality of Service)的方法。这种方法是将几个时隙组合起来构成一个超时隙,每个超时隙的开始分配给不同的业务来进行发包。时隙的分配是根据各种业务的不同优先级来实现的。这种方法可以保证高优先级业务具有较大的吞吐量,较少的MAC延时和较低的丢包率。与802.11e EDCA草案中提出的不同冲突窗口大小的方法相比,这种方法具有可以提高吞吐量,降低丢包率,并能减小站点数目变化对高优先级业务吞吐量的影响等优点。这种新的提供QoS的方法优于不同冲突窗口大小的方法,在IEEE 802.11e EDCA中应用超时隙方法可以大大提高EDCA的性能。  相似文献   

10.
In this paper, we study the problem of packet scheduling in a wireless environment with the objective of minimizing the average transmission energy expenditure under individual packet delay constraints. Most past studies assumed that the input arrivals followed a Poisson process or were statistically independent. However, traffic from a real source typically has strong time correlation. We model a packet scheduling and queuing system for a general input process in linear time-invariant systems. We propose an energy-efficient packet scheduling policy that takes the correlation into account. Meanwhile, a slower transmission rate implies that packets stay in the transmitter for a longer time, which may result in unexpected transmitter overload and buffer overflow. We derive the upper bounds of the maximum transmission rate under an overload probability and the upper bounds of the required buffer size under a packet drop rate. Simulation results show that the proposed scheduler improves up to 15 percent in energy savings compared with the policies that assume statistically independent input. Evaluation of the bounds in providing QoS control shows that both deadline misses and packet drops can be effectively bounded by a predefined constraint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号