首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the problems of (1) detecting the presence of one or more FM chirp signals embedded in noise, and (2) tracking or estimating the unknown, time-varying instantaneous frequency of each chirp component. No prior knowledge is assumed about the number of chirp signals present, the parameters of each chirp, or how the parameters change with time. A detection/estimation algorithm is proposed that uses the Wigner distribution transform to find the best piecewise cubic approximation to each chirp's phase function. The first step of the WD based algorithm consists of properly thresholding the WD of the received signal to produce contours in the time-frequency plane that approximate the instantaneous frequency of each chirp component. These contours can then be approximated as generalized lines in the (ω, t, t2) space. The number of chirp signals (or equivalently, generalized lines) present is determined using maximum likelihood segmentation. Minimum mean square estimation techniques are used to estimate the unknown phase parameters of each chirp component. The authors demonstrate that for the cases of (i) nonoverlapping linear or nonlinear FM chirp signals embedded in noise or (ii) overlapping linear FM chirp signals embedded in noise, the approach is very robust, highly reliable, and can operate efficiently in low signal-to-noise environments where it is hard for even trained operators to detect the presence of chirps while looking at the WD plots of the overall signal. For multicomponent signals, the proposed technique is able to suppress noise as well as the troublesome cross WD components that arise due to the bilinear nature of the WD  相似文献   

2.
Given a single record, the authors consider the problem of estimating the parameters of a harmonic signal buried in noise. The observed data are modeled as a sinusoidal signal plus additive Gaussian noise of unknown covariance. The authors define novel higher order statistics-referred to as “mixed” cumulants-that can be consistently estimated using a single record and are insensitive to colored Gaussian noise. Employing fourth-order mixed cumulants, they estimate the sinusoid parameters using a consistent, nonlinear matching approach. The algorithm requires an initial estimate that is obtained from a consistent, linear estimator. Finally, the authors examine the performance of the proposed method via simulations  相似文献   

3.
Maximum likelihood estimation for array processing in colored noise   总被引:1,自引:0,他引:1  
Direction of arrival estimation of multiple sources, using a uniform linear array, in noise with unknown covariance is considered. The noise is modeled as a spatial autoregressive process with unknown parameters. Both stochastic and deterministic signal models are considered. For the random signal case, an approximate maximum likelihood estimator of the signal and noise parameters is derived. It requires numerical maximization of a compressed likelihood function over the unknown arrival angles. Analytical expressions for the MLEs of the signal covariance and the AR parameters are given. Similar results for the case of deterministic signals are also presented  相似文献   

4.
We address the problem of parameter estimation of superimposed chirp signals in noise. The approach used here is a computationally modest implementation of a maximum likelihood (ML) technique. The ML technique for estimating the complex amplitudes, chirping rates, and frequencies reduces to a separable optimization problem where the chirping rates and frequencies are determined by maximizing a compressed likelihood function that is a function of only the chirping rates and frequencies. Since the compressed likelihood function is multidimensional, its maximization via a grid search is impractical. We propose a noniterative maximization of the compressed likelihood function using importance sampling. Simulation results are presented for a scenario involving closely spaced parameters for the individual signals  相似文献   

5.
Maximum likelihood analysis of cardiac late potentials   总被引:1,自引:0,他引:1  
This study presents a new time-domain method for the detection of late potentials in individual leads. Basic statistical properties of the ECG samples are modeled in order to estimate the amplitude and duration of late potentials. The signal model accounts for correlation in both time and across the ensemble of beats. Late potentials are modeled as a colored process with unknown amplitude which is disturbed by white, Gaussian noise. Maximum likelihood estimation is applied to the model for estimating the amplitude of the late potentials. The resulting estimator consists of an eigenvector-based filter followed by a nonlinear operation. The performance of the maximum likelihood procedure was compared to that obtained by traditional time-domain analysis based on the vector magnitude. It was found that the new technique yielded a substantial improvement of the signal-to-noise ratio in the function used for endpoint determination. This improvement leads to a prolongation of the filtered QRS duration in cases with late potentials  相似文献   

6.
The problem of modified ML estimation of DOAs of multiple source signals incident on a uniform linear array (ULA) in the presence of unknown spatially correlated Gaussian noise is addressed here. Unlike previous work, the proposed method does not impose any structural constraints or parameterization of the signal and noise covariances. It is shown that the characterization suggested here provides a very convenient framework for obtaining an intuitively appealing estimate of the unknown noise covariance matrix via a suitable projection of the observed covariance matrix onto a subspace that is orthogonal complement of the so-called signal subspace. This leads to a formulation of an expression for a so-called modified likelihood function, which can be maximized to obtain the unknown DOAs. For the case of an arbitrary array geometry, this function has explicit dependence on the unknown noise covariance matrix. This explicit dependence can be avoided for the special case of a uniform linear array by using a simple polynomial characterization of the latter. A simple approximate version of this function is then developed that can be maximized via the-well-known IQML algorithm or its variants. An exact estimate based on the maximization of the modified likelihood function is obtained by using nonlinear optimization techniques where the approximate estimates are used for initialization. The proposed estimator is shown to outperform the MAP estimator of Reilly et al. (1992). Extensive simulations have been carried out to show the validity of the proposed algorithm and to compare it with some previous solutions  相似文献   

7.
Time series modeling as the sum of a deterministic signal and an autoregressive (AR) process is studied. Maximum likelihood estimation of the signal amplitudes and AR parameters is seen to result in a nonlinear estimation problem. However, it is shown that for a given class of signals, the use of a parameter transformation can reduce the problem to a linear least squares one. For unknown signal parameters, in addition to the signal amplitudes, the maximization can be reduced to one over the additional signal parameters. The general class of signals for which such parameter transformations are applicable, thereby reducing estimator complexity drastically, is derived. This class includes sinusoids as well as polynomials and polynomial-times-exponential signals. The ideas are based on the theory of invariant subspaces for linear operators. The results form a powerful modeling tool in signal plus noise problems and therefore find application in a large variety of statistical signal processing problems. The authors briefly discuss some applications such as spectral analysis, broadband/transient detection using line array data, and fundamental frequency estimation for periodic signals  相似文献   

8.
This paper addresses estimating the frequency of a cisoid in the presence of white Gaussian noise, which has numerous applications in communications, radar, sonar, and instrumentation and measurement. Due to the nonlinear nature of the frequency estimation problem, there is threshold effect, that is, large error estimates or outliers will occur at sufficiently low signal‐to‐noise ratio (SNR) conditions. Utilizing the ideas of averaging to increase SNR and weighted linear prediction, an optimal frequency estimator with smaller threshold SNR is developed. Computer simulations are included to compare its mean square error performance with that of the maximum likelihood (ML) estimator, improved weighted phase averager, generalized weighted linear predictor, and single weighted sample correlator as well as Cramér‐Rao lower bound. In particular, with smaller computational requirement, the proposed estimator can achieve the same threshold and estimation performance of the ML method.  相似文献   

9.
In part I empirical Bayes estimation procedures are introduced and employed to obtain an estimator for the unknown random scale parameter of a two-parameter Weibull distribution with known shape parameter. In part II, procedures are developed for estimating both the random scale and shape parameters. These estimators use a sequence of maximum likelihood estimates from related reliability experiments to form an empirical estimate of the appropriate unknown prior probability density function. Monte Carlo simulation is used to compare the performance of these estimators with the appropriate maximum likelihood estimator. Algorithms are presented for sequentially obtaining the reduced sample sizes required by the estimators while still providing mean squared error accuracy compatible with the use of the maximum likelihood estimators. In some cases whenever the prior pdf is a member of the Pearson family of distributions, as much as a 60% reduction in total test units is obtained. A numerical example is presented to illustrate the procedures.  相似文献   

10.
It is demonstrated that in problems involving the estimation of linear regression parameters in colored Gaussian noise, the simple least-squares estimator can be significantly suboptimal. When the noise covariance function can be described as a known function of a finite number of unknown nonrandom parameters, it is possible to take advantage of this information to improve upon the least-squares estimator by an appropriate bootstrapping technique. Two examples are given, and comments that may lead to other examples are presented.  相似文献   

11.
This paper considers the problem of estimating a linear trend in noise, where the noise is modeled as independent and identically distributed (i.i.d.) random process with exponential distribution. The corresponding maximum likelihood parameter estimator of the trend and noise parameters is derived, and its performance is analyzed. It turns out that the resulting maximum likelihood estimator has to solve a linear programming problem with number of constraints equal to the number of received data. A recursive form of the maximum likelihood estimator, which makes it suitable for implementation in real-time systems, is then proposed. The memory requirements of the recursive algorithm are data dependent and are investigated by simulations using both computer-generated and recorded data sets  相似文献   

12.
This paper deals with the problem of estimating signal parameters using an array of sensors. This problem is of interest in a variety of applications, such as radar and sonar source localization. A vast number of estimation techniques have been proposed in the literature during the past two decades. Most of these can deliver consistent estimates only if the covariance matrix of the background noise is known. In many applications, the aforementioned assumption is unrealistic. Recently, a number of contributions have addressed the problem of signal parameter estimation in unknown noise environments based on various assumptions on the noise. Herein, a different approach is taken. We assume instead that the signals are partially known. The received signals are modeled as linear combinations of certain known basis functions. The exact maximum likelihood (ML) estimator for the problem at hand is derived, as well as computationally more attractive approximation. The Cramer-Rao lower bound (CRB) on the estimation error variance is also derived and found to coincide with the CRB, assuming an arbitrary deterministic model and known noise covariance  相似文献   

13.
We consider parameter estimation in linear models when some of the parameters are known to be integers. Such problems arise, for example, in positioning using carrier phase measurements in the global positioning system (GPS), where the unknown integers enter the equations as the number of carrier signal cycles between the receiver and the satellites when the carrier signal is initially phase locked. Given a linear model, we address two problems: (1) the problem of estimating the parameters and (2) the problem of verifying the parameter estimates. We show that with additive Gaussian measurement noise the maximum likelihood estimates of the parameters are given by solving an integer least-squares problem. Theoretically, this problem is very difficult computationally (NP-hard); verifying the parameter estimates (computing the probability of estimating the integer parameters correctly) requires computing the integral of a Gaussian probability density function over the Voronoi cell of a lattice. This problem is also very difficult computationally. However, by using a polynomial-time algorithm due to Lenstra, Lenstra, and Lovasz (1982), the LLL algorithm, the integer least-squares problem associated with estimating the parameters can be solved efficiently in practice; sharp upper and lower bounds can be found on the probability of correct integer parameter estimation. We conclude the paper with simulation results that are based on a synthetic GPS setup  相似文献   

14.
This paper presents a robust class of estimators for the parameters of a deterministic signal in impulsive noise. The proposed technique has the structure of the maximum likelihood estimator (MLE) but has an extra degree of freedom: the choice of a nonlinear function (which is different from the score function suggested by the MLE) that can be adjusted to improve robustness. The effect of this nonlinear function is studied analytically via an asymptotic performance analysis. We investigate the covariance of the estimates and the loss of efficiency induced by nonoptimal choices of the nonlinear function, giving special attention to the case of α-stable noise. Finally, we apply the theoretical results to the problem of estimating the parameters of a sinusoidal signal in impulsive noise  相似文献   

15.
Accurate estimation of the amplitude and frequency parameters of sinusoidal signals from noisy observations is an important problem in many signal processing applications. In this paper, the problem is investigated under the assumption of non-Gaussian noise in general and Laplace noise in particular. It is proven mathematically that the maximum likelihood estimator derived under the condition of Laplace white noise is able to attain an asymptotic Cramer-Rao lower bound which is one half of that achieved by periodogram maximization and nonlinear least squares. It is also proven that when applied to non-Laplace situations, the Laplace maximum likelihood estimator, which may also be referred to as the nonlinear least-absolute-deviations estimator, can achieve an even higher statistical efficiency especially when the noise distribution has heavy tails. A computational procedure is proposed to overcome the difficulty of local extrema in the likelihood function. Simulation results are provided to validate the analytical findings.  相似文献   

16.
We consider the linear regression problem of estimating an unknown, deterministic parameter vector based on measurements corrupted by colored Gaussian noise. We present and analyze blind minimax estimators (BMEs), which consist of a bounded parameter set minimax estimator, whose parameter set is itself estimated from measurements. Thus, our approach does not require any prior assumption or knowledge, and the proposed estimator can be applied to any linear regression problem. We demonstrate analytically that the BMEs strictly dominate the least-squares (LS) estimator, i.e., they achieve lower mean-squared error (MSE) for any value of the parameter vector. Both Stein's estimator and its positive-part correction can be derived within the blind minimax framework. Furthermore, our approach can be readily extended to a wider class of estimation problems than Stein's estimator, which is defined only for white noise and nontransformed measurements. We show through simulations that the BMEs generally outperform previous extensions of Stein's technique.  相似文献   

17.
Bearings-only (BO) and Doppler-bearing (DB) target motion analysis (TMA) attempt to obtain a target trajectory based on bearings and on Doppler and bearing measurements, respectively, from an observer to the target. The BO-TMA and DB-TMA problems are nontrivial because the measurement equations are nonlinearly related to the target location parameters. The pseudolinear formulation provides a linear estimator solution, but the resulting location estimate is biased. The instrumental variable method and the numerical maximum likelihood approach can eliminate the bias. Their convergence behavior, however, is not easy to control. This paper proposes an asymptotically unbiased estimator of the tracking problem. The proposed method applies least squares minimization on the pseudolinear equations with a quadratic constraint on the unknown parameters. The resulting estimator is shown to be solving the generalized eigenvalue problem. The proposed solution does not require initial guesses and does not have convergence problems. Sequential forms of the proposed algorithms for both BO-TMA and DB-TMA are derived. The sequential algorithms improve the estimation accuracy as a new measurement arrives and do not require generalized eigenvalue decomposition for solution update. The proposed estimator achieves the Cramer-Rao Lower Bound (CRLB) asymptotically for Gaussian noise before the thresholding effect occurs.  相似文献   

18.
Direction estimation in partially unknown noise fields   总被引:5,自引:0,他引:5  
The problem of direction of arrival estimation in the presence of colored noise with unknown covariance is considered. The unknown noise covariance is assumed to obey a linear parametric model. Using this model, the maximum likelihood directions parameter estimate is derived, and a large sample approximation is formed. It is shown that a priori information on the source signal correlation structure is easily incorporated into this approximate ML (AML) estimator. Furthermore, a closed form expression of the Cramer-Rao bound on the direction parameter is provided. A perturbation analysis with respect to a small error in the assumed noise model is carried out, and an expression of the asymptotic bias due to the model mismatch is given. Computer simulations and an application of the proposed technique to a full-scale passive sonar experiment is provided to illustrate the results  相似文献   

19.
This paper presents a large sample decoupled maximum likelihood (DEML) angle estimator for uncorrelated narrowband plane waves with known waveforms and unknown amplitudes arriving at a sensor array in the presence of unknown and arbitrary spatially colored noise. The DEML estimator decouples the multidimensional problem of the exact ML estimator to a set of 1-D problems and, hence, is computationally efficient. We shall derive the asymptotic statistical performance of the DEML estimator and compare the performance with its Cramer-Rao bound (CRB), i.e., the best possible performance for the class of asymptotically unbiased estimators. We will show that the DEML estimator is asymptotically statistically efficient for uncorrelated signals with known waveforms. We will also show that for moderately correlated signals with known waveforms, the DEML estimator is no longer a large sample maximum likelihood (ML) estimator, but the DEML estimator may still be used for angle estimation, and the performance degradation relative to the CRB is small. We shall show that the DEML estimator can also be used to estimate the arrival angles of desired signals with known waveforms in the presence of interfering or jamming signals by modeling the interfering or jamming signals as random processes with an unknown spatial covariance matrix. Finally, several numerical examples showing the performance of the DEML estimator are presented in this paper  相似文献   

20.
Covariance shaping least-squares estimation   总被引:3,自引:0,他引:3  
A new linear estimator is proposed, which we refer to as the covariance shaping least-squares (CSLS) estimator, for estimating a set of unknown deterministic parameters, x, observed through a known linear transformation H and corrupted by additive noise. The CSLS estimator is a biased estimator directed at improving the performance of the traditional least-squares (LS) estimator by choosing the estimate of x to minimize the (weighted) total error variance in the observations subject to a constraint on the covariance of the estimation error so that we control the dynamic range and spectral shape of the covariance of the estimation error. The presented CSLS estimator is shown to achieve the Cramer-Rao lower bound for biased estimators. Furthermore, analysis of the mean-squared error (MSE) of both the CSLS estimator and the LS estimator demonstrates that the covariance of the estimation error can be chosen such that there is a threshold SNR below which the CSLS estimator yields a lower MSE than the LS estimator for all values of x. As we show, some of the well-known modifications of the LS estimator can be formulated as CSLS estimators. This allows us to interpret these estimators as the estimators that minimize the total error variance in the observations, among all linear estimators with the same covariance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号