首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为了实现轴承多源异构故障数据的特征融合,达到提高故障诊断精度的目的 ,提出了基于深度神经网络的多源故障特征融合方法.介绍了堆叠自编码器和卷积神经网络原理;使用堆叠自编码器提取了一维振动数据的故障特征,使用卷积神经网络提取了二维图像数据的故障特征;为了充分发挥多源异构故障数据的关联性和互补性,使用深度神经网络将一维数据特征和二维数据特征进行交替优化和融合,提取更加能够反映故障特性的隐藏融合特征.以凯斯西储大学轴承故障数据为基础设计了三组实验,由实验结果可以看出,基于融合特征的故障诊断精度比单独使用一维数据特征或二维数据特征的诊断精度高10%以上,充分证明了基于多源异构特征融合故障诊断方法的有效性.  相似文献   

2.
电流信号具有易采集、不易受环境噪声影响的优点,为难以通过振动传感器采集信号的特殊设备提供了可行的监测诊断思路,但电流信号也存在故障特征难以提取等问题。为此,将改进的动态统计滤波与深度卷积神经网络(DCNN)结合,提出一种基于电流信号进行机械设备智能故障诊断的方法。引入综合信息量指标(SIpq)优化滤波效果,基于改进的动态统计滤波方法,使不同状态信号间的特征差异最大化,以提高状态识别精度;通过交替堆叠特征图尺寸不变的卷积层与逐层递减的池化层,构建DCNN,提取电流信号中的高维故障特征。将动态统计滤波后的特征增强图像输入DCNN,识别故障类型。为验证方法有效性,以不平衡、不对中、松动3种故障为对象进行故障类型识别,分析结果表明,所提方法可有效识别故障类型,与传统的ANN、CNN等其他方法对比具有较好的识别精度。  相似文献   

3.
针对目前滚动轴承故障诊断主要采用监督式学习提取故障特征的现状,提出了一种基于稀疏自编码的深度神经网络,实现非监督学习自动提取滚动轴承振动信号的内在特征用于滚动轴承故障诊断。首先,将轴承故障振动信号的频谱训练稀疏自编码获得参数;然后用稀疏自编码获得的参数和轴承振动信号频谱的频谱训练深度神经网络,并结合反向传播算法对深度神经网络进行整体微调提高分类准确度;最后用训练好的深度神经网络来识别滚动轴承故障。对正常轴承、外圈点蚀故障、内圈点蚀故障和滚动体裂纹故障振动信号的分析结果表明:相比反向传播神经网络,提出的深度神经网络更能准确的识别滚动轴承故障类型。  相似文献   

4.
行星齿轮箱振动信号具有非平稳特性,需要一定的先验知识和诊断专业知识设计和解释特征从而实现故障诊断。为了实现行星齿轮箱的智能诊断,提出一种基于经验模态分解(Empirical mode decomposition,EMD)和深度卷积神经网络(Deep convolutional neural network,DCNN)的智能故障诊断方法。首先对振动信号进行经验模态分解得到内禀模式函数(Intrinsic mode function, IMF);然后利用DCNN融合特征信息明显的IMF分量,并自动提取特征;最后,将特征用于分类器分类识别,从而实现行星齿轮箱故障诊断的自动化。试验结果表明:该方法能准确、有效地对行星齿轮箱的工作状态和故障类型进行分类。  相似文献   

5.
采用卷积神经网络对旋转部件进行故障诊断时,其对多尺度的故障特征利用有限,且网络层结构和超参数调试费时费力,针对上述问题,提出了一种基于离散二进制粒子群优化多尺度一维卷积神经网络的BPSO-M1DCNN算法。首先,对M1DCNN网络进行了初始化设计,采用了BPSO算法自适应调整超参数和网络结构构建BPSO-M1DCNN网络;然后,将原始振动数据输入BPSO-M1DCNN网络,进行了特征学习和提取,将学习到的故障特征进行了分类输出;最后,将该算法应用于行星齿轮箱的故障诊断试验,并将其结果与用BPSO-BP神经网络、一维卷积神经网络、M1DCNN网络的结果进行了对比分析,利用变化曲线表示M1DCNN网络、BPSO-M1DCNN网络的正确率和损失率,采用混淆矩阵显示各类故障诊断精度,并利用T-SNE算法对其特征学习过程进行了可视化。研究结果表明:相比BPSO-BP神经网络、1DCNN网络、M1DCNN网络,基于BPSO-M1DCNN网络的行星齿轮箱测试集的平均准确率均有一定提升,应用于行星齿轮箱故障的诊断效果较好。  相似文献   

6.
一维振动信号常常被用于齿轮箱的监测与故障诊断中,使得能及时地对齿轮箱维护以减少损失。因此,从一维振动信号中提取出关键故障特征决定了故障诊断模型的准确性与可靠性。典型的深度神经网络(deep neural network, DNN),如卷积神经网络已经在故障诊断中表现出良好的性能并得到了广泛的应用,但其监督式训练方式往往需要大量的标签数据而限制了其可应用性。因此,提出一种新的深度神经网络模型,一维残差卷积自编码器(1-dimension residual convolutional auto-encoder,1DRCAE),成功应用于振动信号的无监督学习及故障特征提取,显著提高了齿轮箱的故障诊断率。首先,提出了一维卷积层与自编码器的有效集成方法,形成了深度一维卷积自编码器;其次,引入残差学习机制训练一维卷积自编码器,实现对一维振动信号有效地特征提取;最后,基于编码器提取的特征,使用少量标签数据进行分类微调实现齿轮箱故障模式识别。通过齿轮箱试验台采集的传感器数据进行实验验证表明,这种无监督学习方法具有良好的去噪能力和故障特征提取能力,其特征提取效果好于典型的深度神经网络,如深度置信网络(Deepbeliefnetwork,DBN)和堆叠自编码网络(Stackedauto-encoders,SAE),同时故障诊断效果也优于一维卷积神经网络(1-dimension convolutional neural network, 1DCNN)。  相似文献   

7.
针对行星齿轮箱振动信号噪声干扰大、单一分类器泛化能力不强的问题,提出了一种基于深度学习多样性特征提取与信息融合的行星齿轮箱故障诊断方法。利用多目标优化算法优化多个堆栈去噪自动编码器(SDAE)以获得多个性能优异的SDAE,并提取多样性的故障特征;采用多响应线性回归模型集成多样性故障特征实现信息融合,得到多目标集成堆栈去噪自动编码器(MO-ESDAE),最后将其应用于行星齿轮箱故障诊断。实验结果表明:该方法能有效提高故障诊断精度与稳定性,具有较强的泛化能力。  相似文献   

8.
陈超宇  陈磊  张旺  韩捷 《机械传动》2019,43(1):144-149
为了应对日趋庞杂的故障监测系统数据,针对单通道信号存在的信息遗漏以及传统智能诊断手工提取特征的复杂性和不通用性,提出了全矢深度学习滚动轴承智能诊断方法。首先,用全矢谱融合双通道的振动信号,得到全矢融合后的主振矢数据,克服了单通道振动信号信息不完整的缺点;然后,在此基础上构建全矢深度神经网络,结合稀疏编码和去噪编码算法,自适应地提取故障特征。最后,使用反向传播算法进行网络参数整体微调。试验结果表明,该方法能够自适应地提取更为有效的故障特征,提高了故障诊断准确率和稳定性,改善了传统方法的复杂流程。  相似文献   

9.
提出了一种基于深度残差收缩网络的风力发电机齿轮箱故障诊断方法。首先,通过齿轮箱动力学模拟实验平台采集9种工况下的8种故障的振动信号;其次,对所采集的信号进行数据预处理,将其输入至深度残差收缩网络中训练;最后,利用反向传播算法不断优化网络参数,实现变工况下风力发电机齿轮箱故障的识别与分类。实验结果表明,所提方法在变工况场景下,可有效提取齿轮箱的故障特征并具有较高的识别准确率,证明了其在风力发电机齿轮箱故障诊断方面的可行性及有效性。  相似文献   

10.
缘于多传感器信号的融合能够更加准确地诊断机械故障,针对传统浅层融合模型对复杂数据非线性映射与特征表示能力较弱的问题,提出一种利用深度卷积神经网络(deep convolutional neural network,简称DCNN)融合多传感器信号特征的机械故障诊断方法.首先,对多传感器振动信号分别进行特征提取,将获得特征...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号