首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
伴随城市轨道交通绿色低碳设计理念的发展,整车气动减阻优化设计成为提升城际列车节能环保的关键方法。采用基于Realizable k-ε的数值计算方法和流体动力学仿真技术,针对某城际列车进行气动阻力分析,并提出了两种气动减阻优化方案,开展气动阻力分布特性对比研究,验证优化方案的减阻节能效果。研究结果表明:列车(车型1)不同构成部分阻力占总阻力的比例关系:车体(80.49%)>转向架(13.97%)>受电弓(5.54%);不同编组位置阻力系数占比关系:头车(26.06%)>尾车(16.66%)>2车(14.93%)>7车(9.89%)>其他中间车(约8%);列车在140~200 km/h范围内,3种车型的阻力系数近似为常数;优化前后3种车型整车阻力系数分别为0.898、0.858和0.807,两种优化方案减阻率分别为4.45%和10.13%,能耗降低率分别4.63%和9.86%。  相似文献   

2.
为研究长大编组情况下高速列车的空气动力学性能,基于Navier-Stokes方程及标准k-ε湍流模型建立高速列车空气动力学计算模型,计算两列8车编组重联及16车编组情况下的高速列车空气动力学性能。数值计算结果表明,在重联区域,8车流线型处的流动分离直接作用于9车,影响了两车的气动阻力分布,8车阻力系数为0.094,9车阻力系数为0.145,8车编组重联整车气动阻力较16车编组增大0.060。重联编组下,向上升力最大的是8车,升力系数为0.073,向下升力最大的是头车,升力系数为-0.101。对于16车编组,向上升力最大的是尾车,其升力系数为0.054,向下升力最大的为头车,其升力系数为-0.088。研究结果对长编组高速列车气动性能优化具有参考意义。  相似文献   

3.
为研究高速列车转向架区域的气动性能及流场规律,建立列车空气动力学模型,基于SST k-?两方程模型对运行速度分别为250 km/h、300 km/h和350 km/h的高速列车气动性能进行了数值模拟,分析动车及拖车转向架各部件对列车气动性能的影响。计算结果表明:列车运行速度对转向架阻力的影响是显著的,其中对头车转向架影响最大;头车转向架的阻力占总转向架阻力的54.9%,其中构架和轮对分别占35.6%和46.5%,部分部件由于前后压差形成负阻力;拖车转向架的流场结构比动车转向架更加复杂,闸片等部件对转向架区域的流场结构有显著影响;转向架区域外形和设备舱隔墙倾角也会影响其流场结构,斜角入口比直角入口的流场结构更加复杂。  相似文献   

4.
基于CFD三维数值模拟软件,应用时速350公里8编组某型全尺寸高速列车气动模型,研究了轨道及其主要构件对于列车及转向架、受电弓、风挡、不同车厢的气动阻力的影响特性。结果表明:无轨无枕模型与有轨有枕模型比较,前者使整车的压差阻力和摩擦阻力增大,压差阻力增幅约20.9%;幅值增大主要集中在接近车头、车尾的车厢,其中对第2节车的压差阻力影响最大,增幅约110%。轨道制约了轮对尾部涡旋产生和轨面摩擦分别是压差阻力和摩擦阻力减小的主要原因。轨道对于列车部件的影响与空间位置有关,距离轨道越近影响越大,距离轨道越远影响越小。轨道使转向架的压差阻力和摩擦阻力均减小,影响主要集中在头车和第2节车转向架,其中对第2节车的转向架压差阻力影响最大。轨道对风挡和受电弓的气动阻力没有影响。研究表明:轨道对于列车气动阻力的影响是明显的。研究结果能为数值模拟的结果校核和列车减阻优化设计、安全运行提供对比参考。  相似文献   

5.
高速列车头型气动外形关键结构参数优化设计*   总被引:2,自引:0,他引:2  
李明  刘斌  张亮 《机械工程学报》2016,52(20):120-125
降低列车运行阻力和气动噪声是提升高速列车速度能力和环境适应性的有效手段。针对气动阻力、气动噪声这两项优化目标,利用Isight软件建立了集参数化驱动建模、计算网格划分、气动计算、优化分析等步骤的高速列车新头型气动性能自动优化设计流程,运用基于多目标遗传算法NSGA-II的优化设计方法,对鼻尖高度、排障器前端伸缩量、转向架区域挡板倾角等关键设计变量进行了优化设计以及与气动阻力和气动噪声的相关性分析,在此基础上提出了综合性能较佳的新头型气动外形。通过计算结果可知,① 鼻尖高度对整车阻力和头车表面最大声功率均为正相关关系;② 转向架区域隔墙倾角对整车阻力和头车表面最大声功率影响的相关性最大;③ 通过优化转向架区域隔墙倾角可有效降低该处气动噪声的表面声功率。  相似文献   

6.
邱利伟  王金  支锦亦  王超 《机械设计》2019,36(6):139-144
为提升动车组列车设计方案气动外形的选型效率,保证列车良好的气动性能,提出基于数值模拟方法的高速动车组列车气动性能评估模型,并利用流体力学分析软件Fluent对时速400 km/h的7种型号的8编组动车组列车设计方案进行气动性能分析,包括各车体及整车的压差阻力、阻力、阻力系数、升力、升力系数等气动参数。结果表明:整车的压差阻力、整车阻力、整车阻力系数、尾车升力、尾车升力系数在揭示最佳气动外形方案时结果基本是一致的。提出的列车气动评估方法和气动参数有利于对列车设计方案中的最佳气动外形选型。  相似文献   

7.
宋琛  张继业  刘楠 《机械》2016,(6):36-41
为研究高速列车在风沙环境下的气动特性,基于多相流中的欧拉模型理论,建立了高速列车空气动力学模型。数值计算分析了高速列车在0°与90°风向角下的气动特性变化规律。计算结果表明:与无沙情况相比,列车在0°与90°的风向角下,头车的正压区域变大,尾车的正压区域变小,沙尘对头车的冲击最为严重;在0°风向角有沙情况下,列车头车、中间车、尾车的阻力均增大,列车总阻力增大6%左右,头车向下的升力与尾车向上的升力均变大,中间车的升力基本不变;在90°风向角有沙情况下,头车与中间车的阻力变大,尾车阻力变小,列车的总阻力变大,头车、中间车和尾车的升力均减小、侧力均增加。  相似文献   

8.
为研究风沙耦合作用对高速列车运行状态的影响,基于流体动力学理论建立高速列车空气动力学模型。采用三维、定常、不可压雷诺时均Navier-Stokes方程和标准κ-ε两方程湍流控制模型,模拟计算列车在平地、路堤和桥梁上行驶时的气动特性。沙粒采用欧拉-拉格朗日方法进行离散化处理,气流为连续化处理,这种处理方式与风沙自然状态非常吻合。研究结果表明:高速列车在有沙环境下的表面压力远大于无沙环境;列车头车受到的气动阻力最大,且沙粒对头车阻力的影响极为显著,较无沙环境头车阻力增加了(10~12)%;头车受到的倾覆力矩最大,尾车受到的倾覆力矩最小,方向与头车的受力相反;桥梁路况最大正压区相对较大,且列车两侧压力差最大,桥梁迎风侧凹槽处产生漩涡,背风侧产生双回流现象,致使气动性能最差。  相似文献   

9.
张亮  张继业  李田 《机械工程学报》2017,53(22):152-159
为改善高速列车明线运行时的气动性能,基于伴随方法和径向基函数网格变形技术,开展高速列车头型气动优化设计。采用径向基函数网格变形技术,避免列车头型优化过程中的网格重复生成,提高头型优化的效率。通过伴随方法求解目标函数对列车头型的敏感度,无须定义任何的头型设计变量,避免人为指定设计变量对优化结果的影响。将网格变形技术、伴随方法及计算流体动力学(Computational fluid dynamic,CFD)方法相结合,构建高速列车头型优化设计流程,选取整车气动阻力和尾车气动升力为优化目标,对高速列车头型进行多目标气动优化设计。结果表明:伴随方法可以有效地应用于高速列车的头型优化;优化后,在满足约束条件的情况下,列车的整车气动阻力减小2.83%,尾车气动升力减小25.86%;气动阻力减小主要位于头尾车流线型部位,中间车和头尾车车体气动阻力基本保持不变;尾车气动升力减小主要位于流线型部位,尾车车体向下的升力绝对值也有所减小。  相似文献   

10.
《机械科学与技术》2019,(11):1790-1796
基于标准κ-ε双方程湍流模型和拉格朗日离散相模型,研究强降雨条件下列车前端计算区域长度的取值。在此基础上,分析不同车速、不同降雨强度下的高速列车气动特性,并与无雨条件下的计算结果进行比较。研究表明,列车前端计算区域长度应达到雨滴运动水平距离的1.5倍。降雨强度增加,列车周围雨滴浓度整体上增大。雨滴越靠近尾车,浓度越大。车速越大,雨滴飞溅程度越大,飞溅的距离越远。在强降雨条件下,列车的整车阻力、头车阻力、中车阻力均随降雨强度和车速的增加逐渐增大;尾车阻力随降雨强度增加而减小,随车速增加而增大。气动阻力变化的百分比随着降雨强度的增加而增大,随着车速的增加而减小。  相似文献   

11.
高速列车表面脉动压力是引起气动噪声的主要根源,研究车体表面脉动压力对噪声控制等方面有重要意义。采用大涡模拟(LES)仿真计算高速列车运行时头车和尾车外流场的脉动压力,利用二进正交db小波将脉动压力分解为能量互不重叠的正交频带,并分析脉动压力在各频带上的能量分布规律。数值仿真结果表明:列车表面脉动压力由平均压力和在平均压力附近上下波动的脉动部分组成,脉动压力在全频带均有分布,且主要集中在低频区域;随着列车运行速度的提高,车体表面脉动压力幅值迅速增大,主要能量向高频区域移动;头车、尾车脉动压力变化趋势相似,且头车脉动压力大于尾车脉动压力。  相似文献   

12.
为了探究不同形式的风挡对高速列车气动性能的影响,运用数值模拟的方法,采用三维、定常、可压缩雷诺时均方程和κ~ε两方程湍流模型,对配备了3种不同形式风挡(仅具内风挡、内风挡+半开放式外风挡、内风挡+全封闭式外风挡)的3辆编组的CRH380A型高速列车的气动性能从气动阻力和气动升力两个方面进行了研究。研究表明,采用不同形式风挡的高速列车的气动阻力系数:仅具内风挡工况>内风挡+半开放式外风挡工况>内风挡+全封闭式外风挡工况,可见采用内风挡+全封闭式外风挡有利于减小高速列车在运行过程中的气动阻力;当列车运行速度低于350 km/h时,采用不同形式风挡的高速列车的气动升力系数:内风挡+全封闭式外风挡工况>仅具内风挡工况>内风挡+半开放式外风挡工况;仅具内风挡时,头车和尾车升力系数的绝对值较大,增加外风挡后头尾车升力状况有所改善。  相似文献   

13.
为研究城市轻轨低地板列车通过道岔区的动力学行为,选取典型的5模块M+F+T+F+M编组列车为研究对象。低地板列车轮对结构逐步从传统轮对发展为独立轮对,两者导向能力有较大差异,分别选取全传统轮对与全独立轮对列车进行研究,采用多体系统动力学方法,建立列车的动力学模型;采用轮轨多点接触理论,建立道岔的变截面轮轨接触模型。以7号单开道岔为例,分析全传统轮对列车与全独立轮对列车的头车、中间车和尾车通过道岔区的动力学行为。结果表明:通过道岔区比通过普通曲线更容易出现横向位移波动和接触点跳跃,轮轨力迅速增大;独立轮对通过道岔区比传统轮对横移量更大,更容易发生轮缘接触和偏磨;列车通过道岔区时,头车的轮轨横向力比中间车和尾车大,而尾车比头车和中间车更容易出现瞬间车轮跳起现象,中间车的安全性优于头车和尾车。  相似文献   

14.
基于简化模型的头车转向架气动噪声特性研究   总被引:2,自引:0,他引:2  
由于高速列车气动噪声形成的机理和分析较为复杂,目前的检测系统还不能从列车高速运行状态下噪声测试中做出清楚的分辨,通过计算流体力学方法研究高速列车头车转向架气动噪声特性。建立经过简化的转向架、头车未安装转向架的简化车身和头车安装简化转向架的车身三种计算模型,分析列车运行200 km/h,300 km/h速度下简化转向架周围流场与气动声场特性,进一步分析此速度下简化转向架对头车车外气动噪声的影响。分析结果显示转向架周围有周期性的漩涡生成、脱落现象,气动噪声在其周围的辐射规律呈现偶极子分布。转向架车轴和构架横梁的上、下表面为偶极子声源集中的部位。前轮对在垂直与气流方向的竖直平面上和平行于气流方向的竖直平面上引起的噪声比后轮对大,在平行于气流的水平平面上比后轮对小。两个速度下,转向架气动噪声分布规律大致相同,幅值有差别。转向架使头车车外噪声显著增高,转向架附近噪声增幅尤为明显。行车速度200 km/h时,简化转向架能使头车车外气动噪声幅值增大3~5 d BA,行车速度300 km/h时,增幅为5~8 d BA。  相似文献   

15.
应用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法,研究中国标准动车组CR400AF单列车通过隧道时的空气阻力。详细分析高速列车通过隧道时空气阻力与列车周围空气压力、空气流速及压缩波和膨胀波传播叠加三者间的关系,揭示高速列车通过隧道时空气阻力的变化特征。研究隧道长度、阻塞比、车速及列车长度对高速列车通过隧道(尤其长大隧道)时空气阻力的影响规律。结果表明,研究高速列车隧道压力波时,只需要考虑列车驶入驶出隧道诱发的压缩波和膨胀波的反射和叠加;而在研究列车空气阻力和列车周围空气流速时还必须同时考虑压缩波和膨胀波的传播方向。单列车通过隧道的空气阻力均随隧道长度、阻塞比、车速和列车长度增大而增大。特长隧道时,各因素按其影响程度由大到小排列依次为车速、列车长度、阻塞比和隧道长度。其中,平均空气阻力与车速的2次方、与阻塞比的0.60~0.79次方、与隧道长度的0.02次方近似成正比。  相似文献   

16.
超高速真空管道列车产生的气动热效应不容忽视。根据二维轴对称可压缩N-S方程、Sutherland三方程模型和SST k-ω湍流模型,运用动网格和动态自适应网格两种方法,对车速为1 250km/h的超级列车在低压管道中飞行时所产生的流场结构及气动热变化规律进行了深入研究。研究结果表明,伴随着弓形激波、正激波、反射激波、菱形激波等激波簇结构的变化,击中车身的激波会引起蒙皮表面产生明显的瞬时温升;列车温度边界层从头车车窗下方开始,沿车身向后逐渐变厚,在尾车车身处达到最大,而后在尾车肩部变薄,接着继续增厚,直到边界层分离;头尾车司机室窗户附近温升最大,且最大温度主要出现在头车司机室窗户;随着列车不断运动,不同车厢的气动力及其周围的温度分布逐渐趋于稳定,达到平衡状态。研究成果为超高速真空管道列车蒙皮结构防热材料设计奠定一定基础。  相似文献   

17.
为研究在横风环境下列车的气动特性,以3辆编组列车作为研究对象,首先结合风洞试验验证Fluent软件数值模拟的可行性,其次对车速为300 km/h下五种横风速度工况进行数值模拟研究。分析结果表明:在车速一定时,随着横风速度的增大,头车受到的侧向力上升且其值最大;中间车侧向力和阻力均有所上升,升力先增大后减小;尾车的侧向力和阻力始终上升,升力先升后降;同时在列车背风侧则会有漩涡不断生成、脱离、融合。  相似文献   

18.
李人宪  袁磊 《机械工程学报》2014,50(24):115-121
高速列车通过隧道时将会在隧道内引起相当复杂的气体压力波动,这是由于列车进入隧道时在隧道入口产生的压力波在隧道内来回传递并与列车经过时的气体压力扰动相互叠加的结果。从车体强度设计和列车运行安全性角度考虑,希望了解隧道内可能的最大气体正、负压力大小及其发生位置;气体压力波动与列车运行速度的关系。通过流体力学方程三维动态数值计算,仿真分析列车高速通过隧道的过程。计算结果证明了入口压力波效应与列车经过的扰动效应的叠加关系,得到列车通过时隧道内最大正压和最大负压发生的可能位置,以及最大正压值与最大负压值与车速间的关系式。可为高速铁路隧道和高速列车设计提供参考。  相似文献   

19.
基于时速400 km中国标准化动车组的动力学参数,利用SIMPACK软件建立动力学模型,模拟列车在无风、“中国帽”横风激扰、列车交会以及通过隧道等状态下的运行平稳性,以便支撑动车组的设计工作。研究表明:在无风、两列车交会运行以及通过隧道的状态下,车速对列车横向平稳性的影响最大;在“中国帽”横风激扰的状态下,车速对列车横向平稳性以及乘坐舒适度的影响较大;在无风、横风激扰以及通过隧道的状态下,随着车速的增大,头车、中间车和尾车的平稳性以及乘坐舒适度都在增大。  相似文献   

20.
李虎  金阿芳  刘芳  李文涛 《机械设计与制造》2022,374(4):187-191+195
为研究高速列车在风沙环境中运行时的空气动力学性能及冲蚀特性,基于Navier-Stokes方程和标准κ-ε方程控制模型,运用FLUENT软件中离散相模型(DPM)对沙粒进行离散化处理,对气流进行连续化处理。数值模拟了高速列车运行速度为250km/h,风速为20m/s时,高速列车在风沙环境下的表面压力、气动阻力、黏性力及冲蚀特性,采用欧拉-拉格朗日方法进行求解计算。研究结果表明:列车在高速运行时最大正压主要在分布在车头鼻翼处,受风沙影响时列车的表面压力有所增大;列车运行的速度越大或沙粒颗粒直径越大,车头冲蚀越严重;在风沙环境下行驶时,头车阻力系数增加了32%,车尾增加了25%,升力和黏性力有不同程度的减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号