首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
以蓖麻油(CO)、异佛尔酮二异氰酸酯(IPDI)、阳离子扩链剂N-甲基二乙醇胺(MDEA)、封端剂甲基丙烯酸羟乙酯(HEMA)为主要原料,制备一系列紫外(UV)固化型蓖麻油基水性聚氨酯(UWPU)乳液.为进一步提升其抗菌性能,通过引入胍基的方法,制备出抗菌型UV固化蓖麻油基水性聚氨酯(GWPU)乳液.通过耐水性、抑菌圈、抗菌性能测试对制得胶膜性能进行了检测.结果表明,GWPU胶膜相对UWPU吸水率有所上升,但均保持在10%以下;GWPU胶膜抗菌方式为接触性杀菌,同时不具有浸出性;当氨基胍盐含量为UWPU胶膜质量的1.2%时,GWPU对金黄色葡萄球菌(S.aureus)、大肠杆菌(E.coli)的抗菌率均可达99.9%,且经过10 d抗菌测试后仍能保持99.9%的抗菌性.  相似文献   

2.
以蓖麻油(CO)、异佛尔酮二异氰酸酯(IPDI)、阳离子扩链剂N-甲基二乙醇胺(MDEA)、封端剂甲基丙烯酸羟乙酯(HEMA)为主要原料,制备一系列紫外(UV)固化型蓖麻油基水性聚氨酯(UWPU)乳液.为进一步提升其抗菌性能,通过引入胍基的方法,制备出抗菌型UV固化蓖麻油基水性聚氨酯(GWPU)乳液.通过耐水性、抑菌圈、抗菌性能测试对制得胶膜性能进行了检测.结果表明,GWPU胶膜相对UWPU吸水率有所上升,但均保持在10%以下;GWPU胶膜抗菌方式为接触性杀菌,同时不具有浸出性;当氨基胍盐含量为UWPU胶膜质量的1.2%时,GWPU对金黄色葡萄球菌(S.aureus)、大肠杆菌(E.coli)的抗菌率均可达99.9%,且经过10 d抗菌测试后仍能保持99.9%的抗菌性.  相似文献   

3.
以蓖麻油(CO)、异佛尔酮二异氰酸酯(IPDI)、阳离子扩链剂N-甲基二乙醇胺(MDEA)、封端剂甲基丙烯酸羟乙酯(HEMA)为主要原料制备一系列紫外(UV)固化型蓖麻油基水性聚氨酯(UWPU)。为进一步提升其抗菌性能,通过引入胍基的方法,成功制备出抗菌型UV固化蓖麻油基水性聚氨酯(GWPU)。通过耐水性测试、抑菌圈测试、抗菌性能测试对实验制备胶膜性能进行检测。 结果表明:GWPU胶膜相对UWPU吸水率有所上升,但均保持在10%以下;GWPU胶膜抗菌方式为接触性杀菌同时不具有溢出性;当氨基胍盐(AH)质量分数为预聚物1.2%时GWPU对金黄色葡萄球菌(S.aureus)、大肠杆菌(E.coli)的抗菌率可达99.9%,且经过抗菌持久性测试后仍能保持99.9%的抗菌性。  相似文献   

4.
吕斌 《精细化工》2022,39(3):541-547
本研究以低成本的二甲基二甲氧基硅烷为主要原料,通过水解缩合反应制备合成了聚二甲基硅氧烷(PDMS),进而将其引入蓖麻油基水性聚氨酯(CWPU-SOP)中制备了具有防污性能的蓖麻油基水性聚氨酯(PDMS/CWPU-SOP)。结果表明,当PDMS引入量为8%时,与CWPU-SOP薄膜相比,PDMS/CWPU-SOP薄膜接触角提高了25?,达110?,PDMS/CWPU-SOP薄膜的吸水率下降了7%,为15%;PDMS提高了薄膜疏水性和耐水性。PDMS/CWPU-SOP薄膜在不同酸碱性的液滴在其表面可自由滚落且不留痕迹,具有一定的防污性能。  相似文献   

5.
己二胺(HMDA)和盐酸胍(GHC)通过熔融缩聚制备了抗菌剂聚六亚甲基胍盐酸盐(PHMG),将PHMG与甲基丙烯酸缩水甘油酯(GMA)反应制得了C==C官能化PHMG(MPHMG)。通过FTIR、1HNMR、13CNMR和UV对MPHMG进行了表征。将MPHMG、2-羟基-2-甲基-1-苯基丙酮和C==C封端非离子水性聚氨酯(NWPU)共混,待水挥发后经紫外固化得到PHMG基抗菌涂层GNWPU。通过FTIR、TGA、拉伸、吸水率和抗菌性能测试对GNWPU胶膜的结构与性能进行了表征。结果表明:MPHMG会增加GNWPU胶膜中软段的氢键作用和亲水基团含量。相对于NWPU胶膜,当GNWPU中MPHMG含量为2.0%(以NWPU质量为基准,下同)时,其热失重30%和50%所对应温度(T30%和T50%)分别提高了7.3和12.6℃,拉伸强度提高了1.6 MPa,吸水率增加了6.8%。抗菌实验表明,当胶膜中MPHMG的含量大于1.0%时,接触细菌2 h,对金黄色葡萄球菌和大肠杆菌的抗菌率均可达到99.8%以上。  相似文献   

6.
采用自乳化聚氨酯水分散体的制备方法,分别制备了含蓖麻油基和巯基的聚氨酯水分散体.将两者按一定比例复合,加入水性光引发剂,在紫外光照射下,通过水性光引发剂引发涂层中的双键及巯基进行巯基-烯点击反应,制得交联聚氨酯涂膜.采用核磁共振氢谱、红外光谱、差示扫描量热仪、热重分析等手段对水分散体及光固化涂膜的结构和性能进行了分析表征.结果表明:巯基和蓖麻油结构中的碳碳双键成功地引入到了水性聚氨酯链段中;在紫外光辐照下,巯基和不饱和双键间进行了加成反应;UV固化膜具有良好的机械性能和热稳定性:凝胶量为96.67%、胶膜吸水率为13.0%、耐冲击性大于50 cm、硬度为5H、耐溶剂(甲乙酮)拭擦次数为734次、失质量50%时的温度为375 ℃.  相似文献   

7.
通过乙二胺(GHC)和盐酸胍(GHC)熔融缩聚制备了抗菌剂聚六亚甲基胍盐酸盐(PHMG),将PHMG与甲基丙烯酸缩水甘油酯(GMA)反应制得双键官能化PHMG(MPHMG),通过FTIR、1H NMR、13C NMR和UV表征了MPHMG的成功合成;将MPHMG、光引发剂和双键封端非离子水性聚氨酯(NU)共混,待水挥发后经紫外固化得到抗菌涂层PNU。通过FTIR、TGA、拉伸、吸水率和抗菌性能测试对PNU胶膜的结构与性能进行了表征。结果表明,MPHMG会增加PNU胶膜中软段的氢键作用和亲水基团含量,当胶膜中MPHNG含量为2.0%时,其T30%和T50%分别提高了7.3℃和12.6℃,拉伸强度提高了1.6MPa,吸水率增加了6.8%。抗菌试验表明,当胶膜中MPHMG的含量大于1.0%时,接触细菌2h,对金黄色葡萄球菌和大肠杆菌的抗菌率均可以达到99.8%以上。  相似文献   

8.
闫益鑫  梁小红  贾兰  余雯雯  卫爱丽  张衡 《精细化工》2023,40(6):1280-1286+1318
以异佛尔酮二异氰酸酯(IPDI)、聚碳酸酯二醇-1000(PCDL-1000)、蓖麻油(CO)、季戊四醇三丙烯酸酯(PETA)为主要原料,使用丙酮法制备了一系列双重交联的CO基水性聚氨酯(CWPU)乳液。采用FTIR、紫外-可见分光光度计、铅笔硬度计、电子万能实验机、SEM、电化学工作站对CWPU薄膜进行了表征,测试了CWPU薄膜的拉伸性能、耐水性、耐磨性及耐腐蚀性,探讨了其耐腐蚀机理。结果表明,当CO含量(以乳液溶质总质量计,下同)为4%时,制备的薄膜CWPU的24 h吸水率仅为4.5%,对Q235钢板基底的附着力为0级,对Q235钢板基底的保护效率可达99.05%,表明所制CWPU薄膜具有优异的耐水、防腐蚀性能。  相似文献   

9.
以二乙醇胺、甲基丙烯酸十三氟辛酯为原料,通过迈克尔加成反应合成一种含氟二元醇(F-DEA),并以此为含氟单体,通过缩合共聚的方法与异佛尔酮二异氰酸酯(IPDI)、聚四亚甲基醚二醇(PTMG-1000)、N-甲基二乙醇胺(MDEA)以及季戊四醇三丙烯酸酯(PETA)反应合成一种阳离子型水性UV固化含氟聚氨酯树脂。利用FT-IR、1H-NMR等手段对产物的分子结构进行表征。采用粒径分析、接触角、X射线光电子能谱(XPS)以及各种性能测试手段,对乳液、光固化过程及涂膜性能进行分析研究。结果表明:在一定条件下,该树脂能稳定分散在水中,随着含氟量的增加,乳液粒径增大,但光固化效率有所降低,同时热处理后的氟碳链迁移至涂膜表面,所得的光固化涂膜各种性能较好,特别是耐水和耐酸碱性有明显改善。  相似文献   

10.
选用异佛尔酮二异氰酸酯(IPDI)、聚酯多元醇(PCDL)、二羟甲基丙酸(DMPA)、甲基丙烯 酸羟乙酯(HEMA)、季戊四醇三丙烯酸酯(PETA)、三乙胺(TEA)、甲基丙烯酸十二氟庚酯(DFHMA)为 主要原料合成了一种UV固化水性含氟聚氨酯。采用FT-IR、1H NMR、光学接触角测量仪、粒度分析 仪、热重分析仪、电子拉力机等对涂膜的结构与性能进行了表征与测试。结果表明:随着甲基丙烯酸 十二氟庚酯的加入,乳液粒径变大,分布变宽,涂膜接触角明显变大,吸水率明显降低,热稳定性有所 提升,拉伸强度变大。当甲基丙烯酸十二氟庚酯添加量为6%时,涂膜综合性能最好。  相似文献   

11.
Water resistance is a unique advantage of castor oil-based polyurethane, permitting the application of coatings in humid environments. However, its low thermal decomposition temperature remains a limitation. Here, to demonstrate a simple method to improve the thermal stability of cured films, we prepared an organic montmorillonite dispersion utilising 3-(methacryloyloxy)propyltrimethoxysilane and protonated 3-aminopropyltriethoxysilane for modifying the clay. The method was put into practice by directly mixing the dispersion with a UV-curable castor oil-based waterborne polyurethane dispersion. The inclusion of organic molecule chains from the silane coupling agents noticeably improves the compatibility of polyurethane with organic montmorillonite, which imparts the composite latex with better thermal stability and mechanical properties when the organic montmorillonite additive is 5.0?wt-%.  相似文献   

12.
以改性蓖麻油(MCO)、聚碳酸酯二醇(PCDL)、异佛尔酮二异氰酸酯(IPDI)、六亚甲基二异氰酸酯(HDI)和二羟甲基丙酸(DMPA)等为原料合成水性聚氨酯种子乳液,通过MCO的双键活性位实现丙烯酸酯(AC)单体的种子乳液聚合,得到聚氨酯–丙烯酸酯(PUA)乳液。通过FT–IR(傅里叶变换红外光谱)分析、激光粒度仪、旋转黏度计研究了AC单体含量及配比、助剂用量对PUA乳液性能的影响。通过电子拉力试验机、耐水试验和动态力学分析仪研究了不同AC含量PUA膜的力学、耐水和动态力学性能。结果表明:通过种子乳液共聚,PUA均显示一个玻璃化温度,说明聚丙烯酸酯与聚氨酯具有较好的相容性;当n(MCO):n(PCDL)=1.2,n(甲基丙烯酸正丁酯):n(甲基丙烯酸甲酯)=0.9,w(乳化剂SDS)为2.0%,w(引发剂AIBN)为0.2%时所合成的PUA稳定性最好,且具有适中的黏度和较好的粒径分布;随AC含量的提高,PUA胶膜耐水性提高,胶膜硬度和弹性模量逐渐提高,拉伸强度和伸长率均在w(AC)为10%时出现最大值。  相似文献   

13.
Waterborne polyurethane dispersions (WPUDs) were synthesized successfully from castor oil-based polyol, isophorone diisocyanate and dimethylol propionic acid with NCO/OH ratio of 1.5. Different weight percentages of cloisite 30B (1, 2, and 3 wt%) were loaded with WPUDs to prepare nanocomposite films. Prepared prepolymer and nanocomposite films were characterized using FTIR, XRD, SEM, TEM, DSC, and TGA techniques, and coating properties, such as pencil hardness, abrasion resistance, impact resistance, and contact angle, were evaluated. The results obtained from different amounts of clay loading were compared with the pristine castor oil-based WPUDs. The FTIR spectra deconvolution technique was used to study the hydrogen bonding effect within the polymer with an increase in clay content. TGA analysis showed that the thermal stability of WPUDs increases with cloisite 30B (C30B) content. The surface morphology and hydrophilicity/hydrophobicity nature of the nanocomposite films were characterized using scanning electron microscopy and contact angle measurement. The results obtained from tensile tests indicated that the mechanical property of the dispersion system improved with C30B content. A high-performance castor oil-based nanocomposite coating with low volatile organic component can be targeted as an outcome of this work.  相似文献   

14.
In recent years, a lot of interest has been given to renewable resources for their environmental friendliness and potential biodegradability in the synthesis of urethane-derived polymers. In this work, UV-curable castor oil-based polyfunctional polyurethane acrylate (COPUA) was prepared by the reaction of isophorone diisocyanate (IPDI) with castor oil and pentaerythritol triacrylate (PETA). The structures and molecular weights of the targeted IPDI–PETA and COPUA were characterized by FTIR, 1H NMR, and GPC, respectively. In addition, the effect of reactive diluent content on damping properties, thermal stabilities, and mechanical properties of COPUA was characterized by dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and universal test machine. DMA revealed the copolymers had a glass transition temperature (T g) from 31.81 to 48.09°C. TGA showed that thermal initial decomposition temperatures were above 344.5°C, indicating the copolymers had certain thermal stability. Finally, some physical properties of curing films were studied by the contact angle and water absorption, and the results showed that the coatings exhibited good hydrophobicity. The COPUA obtained from castor oil can be used as eco-friendly materials and other applications alternative to the use of other petrochemicals in coatings.  相似文献   

15.
The development of vegetable oil-based polymers was particularly suitable for the era of increasingly scarce petroleum. Self-colored castor oil-based waterborne polyurethanes (PUs) were successfully synthesized based on castor oil and 1-amino-4-hydroxy-2-(6-hydroxyhexyl) anthraquinone (DR) as polyols. The UV–Vis spectrum showed that the addition of carboxylic acid groups make the spectrum of the PU produce the hyperchromic effect under alkaline conditions. Castor oil-based waterborne colored PUs possessed excellent stability under weak alkaline conditions. The connection of castor oil caused the PU to constitute soft polymer networks. PU coatings on cotton fabrics possessed excellent color properties. The urethane groups in the PUs formed hydrogen bonds with the hydroxyl groups on the cotton fibers and the polymer network structure formed by the PU coating itself made the color fastness of the cotton coatings reached grade 5. With the increase of castor oil content, the degradation rate of castor oil-based waterborne colored PU increased from 3.45% to 3.65%. This work provides a way to impart excellent color properties and fastness to PU coatings by inserting dye molecules and vegetable oils into the PU macromolecular chain.  相似文献   

16.
A series of ultraviolet (UV)-curable waterborne hyperbranched polyurethane dispersions (WHPUDs) have been successfully synthesized by modifying the hyperbranched polyester H10, which was prepared using pentaerythritol as a core molecule and dimethylolpropionic acid as monomers, with succinic anhydride, toluene diisocyanate (TDI), and hydroxypropyl acrylate (HPA). The H10 was characterized by 1H nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry. The properties of the WHPUDs with different content of succinic anhydride and TDI–HPA have been investigated by measuring the stability, the particle size, and the rheological behavior. The effects of the content of succinic anhydride and TDI–HPA were studied in terms of UV-curing rate, water resistance, and thermogravimetric behaviors of WHPUD coatings. The WHPUDs showed good appearance, particle size, viscosity, and storage stability. The WHPUD films showed superior photosensitivity and the percent conversion of C=C bonds reached about 80% when the radiation time was 50 s. Moreover, the UV-cured films had good water resistance and thermostability, which can benefit a waterborne polyurethane resin for waterborne coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号