首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
寻迹控制作为自动驾驶车辆横向控制中最基本环节,其稳定性和跟踪精度通常与车速、转弯曲率等相关,直接影响车辆在复杂行驶工况中的安全性。为提高自动驾驶车辆在复杂工况下的稳定性和跟踪精度,结合路径规划、寻迹控制并考虑车辆稳定性提出基于自适应预瞄路径的自动驾驶车辆寻迹和避障控制方法。首先,基于车辆二自由度模型设计出预瞄距离自适应算法,其根据车辆动力学状态和路面附着调节预瞄距离;其次,通过三次多项式拟合方法给出给定预瞄距离下的预瞄路径;最后,基于避障能力、跟踪精度、车辆稳定性指标设计出粒子群优化算法(PSO),实现了算法参数的寻优。通过硬件在环试验和实车试验验证了算法在寻迹、换道和避障工况下效果,结果表明算法以小运算量实现了跟踪时的预瞄路径自适应调节,兼顾跟踪精度和车辆稳定性。  相似文献   

2.
为了提高智能汽车行驶安全性,研究了智能汽车换道避障路径规划与跟踪控制问题。在路径规划方面,给出了换道避障决策过程,提出了等速偏移函数与正弦函数加权叠加的路径规划方法,经验证此路径满足曲率约束条件;建立了车辆运动学和动力学模型,使用位姿误差方程求解了期望横摆角速度;在路径跟踪方面,将RBF神经网络与滑膜控制结合,提出了神经滑膜控制器;经仿真验证,相比于传统滑膜控制器,神经滑膜控制器不仅减弱了抖振现象,而且对路径跟踪的纵向偏差降低了200%,方向偏差降低了300%,且神经滑膜控制器鲁棒性很好。  相似文献   

3.
为了保证汽车在高速状态下紧急避障的安全性,研究了汽车紧急避障系统。建立了汽车动力学模型和质点模型;使用S函数规划了初步避障路径,考虑避障过程中路径内出现新障碍物的情况,提出了模型预测控制的路径再规划方法;在路径跟踪方面,考虑汽车高速行驶在低附着路面等极限工况,以路径跟踪误差最小和输入量最小为优化目标,设计了考虑车辆非线性特征的线性时变模型预测控制器。经仿真验证,在避障过程中路径内出现新障碍物时,路径再规划方法可以规划出一条安全、且偏离初步路径最小的路径;在极限工况下,线性模型预测跟踪控制器会发生甩尾危险,无法实现路径跟踪;而线性时变模型能够实现路径跟踪,且跟踪过程安全稳定。  相似文献   

4.
汽车数量的急剧增长使得道路安全问题日益严峻,如何提高车辆的自动化水平来改善交通问题成为了目前的研究热点。在智能车辆自动驾驶领域,车辆控制算法是整个智能车辆自动驾驶系统中最为基础关键的部分之一,决定了智能车辆行驶时的安全性和舒适性。为实现智能车辆控制,现有研究常根据智能车辆的横向运动和纵向运动将车辆控制简单分为横向控制和纵向控制,但车辆本身是一个高度耦合的复杂控制系统,简化解耦控制不符合实际车辆动力学特性。为提高车辆的横纵向综合控制能力,本文基于模型预测控制的理论原理,提出了一种适用于智能车辆路径和速度跟踪的横纵向控制算法。该控制算法以前轮转角和轮胎纵向力为控制量,以车辆与参考道路中心的纵向位置差、横向位置差、横摆角误差以及与参考车速的横向和纵向速度误差为零为控制目标,基于搭建的三自由度动力学模型,进行智能车辆横纵向控制器设计。随后,基于Carsim/Simulink联合仿真平台,搭建Simulink模型对所设计的控制器性能进行验证,仿真结果表明,本文提出的基于MPC的横纵向控制算法,在对双移线工况进行跟踪时,能很好的跟踪参考速度和参考路径,误差范围均在合理范围内,能实现较好的控制效果。...  相似文献   

5.
综合考虑智能电动车辆动力学方程中轮胎纵、横向力之间的耦合,使得纵向和横向控制器耦合在一个相互联系的控制结构中。纵向控制器基于串级控制结构,用于速度跟踪和力矩控制。基于纵向滑动率和控制力矩的虚拟控制律跟踪时变的纵向速度,设定时变控制矩阵的时变项边界从而获得纵向控制稳定的条件;提出一种跟踪期望横摆角横向控制方法,在车辆当前行驶位置和道路预瞄点之间实时规划逼近目标路径的虚拟路径。采用基于上界的滑模变结构策略跟踪期望横摆角,使车辆实现自动驾驶,参考速度由给定跟踪路径获得。横向控制基于静状态反馈控制、期望横摆角度控制及期望横摆角控制通过Matlab/Simulink仿真对比,验证了联合控制策略的有效性。  相似文献   

6.
非线性模型预测控制(NMPC)在车辆路径跟踪控制中的应用日益广泛,但目前的研究成果中尚未深入考虑预测时域和速度对车辆路径跟踪控制性能的影响。为此,分析了预测时域、速度与车辆路径跟踪控制性能之间的关系;采用三次多项式拟合获得了能够保证车辆路径跟踪横向误差小于0.1 m的最佳预测时域和参考速度的控制律;改进了用于车辆路径跟踪控制的NMPC控制器,且改进后的NMPC控制器的性能通过仿真进行了验证。仿真结果表明:改进后的NMPC控制器的横向误差在0.092 8 m以内,航向误差在0.072 4 rad以内。相比传统NMPC控制器,改进后的NMPC控制器将最大横向误差减小了4.267 1 m以上,将最大航向误差减小了0.392 7 rad以上,路径跟踪控制性能得到了较大幅度的提高。  相似文献   

7.
为解决智能车辆的自主转向问题,提高车辆在高速运动过程中的转向精度和稳定性,在智能网联汽车的背景下,从路径跟踪控制出发,提出一种变参数的智能网联汽车路径跟踪控制方法。该方法基于模型预测控制原理,设计了一种智能网联汽车的路径跟踪控制器。该方法先以3自由度模型的车辆模型为控制系统;对系统进行线性化后,确定系统的二次型目标函数,并依据函数形式确定矩阵形式;然后,在Carsim和Matlab/Simulink平台上进行离线仿真,确定各个典型工况下适用于该路径跟踪控制器的仿真参数;最后实现系统可根据由车联网获得车辆实际所处道路形状和实际车速选择合适的路径跟踪控制器的控制参数,完成智能网联汽车的自动转向。仿真结果表明该控制器相对于固定控制参数的控制器具有更好的控制效果,可控制车辆以较高车速行驶时达到较高跟踪精度和行驶稳定性。  相似文献   

8.
在智能车辆路径跟踪控制研究中,提出了一种位置误差控制器,由期望横摆角速度生成器和模糊PID控制器组成。建立车辆的运动学及位置误差模型,在当前车辆质心与目标路径预瞄点间实时规划虚拟行驶路径。分析车辆沿虚拟路径行驶时期望横摆角速度的变化率的计算,代入车辆行驶状态及目标跟踪路径信息得到期望横摆角速度生成器。将期望横摆角速度生成器与模糊PID控制器结合,以双移线道路为目标跟踪路径进行联合跟踪仿真。仿真结果表明跟踪偏差主要发生在曲线道路与直线道路连接处,且车辆在低速下跟踪精度较高,稳定性好,中高速时跟踪精度及稳定性都降低。  相似文献   

9.
为改善四轮驱动电动汽车在转向行驶工况下因车速较快导致的横向稳定性下降问题,提出了一种基于模型预测控制(Model Predictive Control, MPC)的自适应预测控制方法。在建立车辆三自由度模型、轮胎模型和驾驶员模型的基础上,通过结合模型预测控制和比例积分微分(Proportional Integral Derivative, PID)控制,设计了自适应预测控制器,以实现四轮驱动电动汽车横向稳定控制。通过CarSim软件与Simulink软件进行联合仿真,结果表明,与传统PID控制相比,自适应预测控制的侧向位移减小了7.9%,横摆角速度降低了37.5%,所提出的控制方法有效提高了期望路径的跟踪精度,改善了四轮驱动电动汽车在转向行驶过程中的横向稳定性。  相似文献   

10.
基于道路信息,使用驾驶员预瞄模型产生执行器输入是无人驾驶车辆在路径跟踪中使用的主要方法之一,但对于车速较高与转弯半径小等工况,模型误差会导致较差的驾驶舒适性,车辆甚至失去稳定性。为提高无人驾驶车辆路径的跟踪精度,同时兼顾转向频度和车辆稳定性,提出基于粒子群多目标优化(Particle swarm optimization,PSO)算法的预瞄距离自适应驾驶员模型,并将之应用于路径跟踪控制。首先,基于单点预瞄偏差模型,采用滑模变结构设计转向控制器;其次,以路径跟踪精度、转向频度和车辆稳定性为综合性能指标,设计了PSO优化算法,实现了驾驶员模型预瞄距离的自适应寻优。最后,在搭建的CarSim-Simulink联合仿真平台与台架试验上,对所提出的预瞄距离自适应驾驶员预瞄模型进行了仿真和硬件在环试验验证。结果表明,经优化后的预瞄距离能够适应不同车速和道路曲率,驾驶员预瞄模型能兼顾路径跟踪精度、转向频度和车辆稳定性等需求。预瞄距离自适应驾驶员模型结合道路与车速信息,增大对路况与车况适应性,为无人驾驶车辆路径跟踪控制提供可靠的输入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号