首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
根据曲线和曲面两种几何元素的接触特点,提出了线面对构齿轮啮合原理。定义了线面接触与线面啮合的概念,给出了线面啮合运动三要素;建立了线面啮合基本理论,得到与已知曲面相啮合的共轭曲线方程的通用表达式;通过在曲线每一点处的法平面上建立截面齿廓,进而构建连续曲面。以平行轴内啮合渐开线齿轮为例,通过在渐开线内齿轮齿面上选取接触曲线,构建新的线面啮合齿轮副,分析了线面啮合齿轮啮合过程的一般规律。研究结果表明,根据线面啮合原理,通过选取合适的几何参数,可以构建出一对正确啮合的点接触齿轮。该原理为齿轮齿面构建提供了新方法。  相似文献   

2.
根据齿轮啮合原理运动学法,提出在渐开线少齿差行星传动共轭啮合副行星轮外齿轮齿面选定上选定一条光滑曲线Γ,以该曲线的等距曲线作为球心运动轨迹形成管状球族包络面。提出用管状球族包络面代替行星轮外齿轮渐开线齿面,得到新的啮合副,并给出啮合副的统一方程式;详细讨论了由管状包络面形成行星轮新齿廓的方法,该新齿廓称为啮合管齿廓。给出了与曲线Γ相共轭的接触线统一方程,讨论了点接触渐开线少齿差行星传动的啮合特性;啮合管与渐开线内齿轮构成点接触啮合副,点接触啮合副具有滑动率低,传动效率高等特点。  相似文献   

3.
以点线啮合齿轮副与渐开线齿轮副为研究对象,建立两种啮合齿轮的仿真模型,综合对比分析了点线啮合齿轮与渐开线齿轮在啮合传动误差、齿面载荷分布、齿面滑动速度分布、齿面接触应力分布、齿根弯曲应力分布、啮合接触迹线分析等方面的啮合特性。分析得知,点线啮合齿轮在上述啮合特性方面明显优于渐开线啮合齿轮。研究为全面理解点线啮合齿轮的传动特性提供了理论依据,对其推广应用具有一定参考价值。  相似文献   

4.
相交轴渐开线变厚齿轮几何设计与啮合特性分析   总被引:1,自引:0,他引:1  
根据空间齿轮啮合原理,建立相交轴渐开线变厚齿轮传动工作节圆锥模型,确定工作节锥角、齿线倾斜角及两齿轮安装距。提出空间点接触到线接触的转变控制条件,实现相交轴齿轮副的近似线接触;推导齿轮变位系数对节圆锥左右两侧有效齿宽的影响;基于相交轴变厚齿轮副参数关系,分析设计参数对啮合主方向角(FPD角)和齿轮副重合度的影响;根据线接触控制条件完成齿轮副参数设计并采用有限元法进行啮合特性分析,结果表明,考虑线接触条件的节圆锥设计得到的相交轴齿轮副在加载情况下,啮合状态呈现明显的线接触且啮合区域达到整个区域的50%左右,试验验证了理论分析的正确性。  相似文献   

5.
将内斜齿轮传动副的外斜齿轮分别进行齿形、齿向修形,实现内斜齿轮的点接触。建立内斜齿轮副的传动坐标系,推导内斜齿轮和修形外斜齿轮的齿面方程,根据啮合理论建立非线性啮合方程组。计算内斜齿轮副参考点处的相对速度和法向量,通过牛顿迭代法得到了非线性啮合方程组的数值解,代入啮合方程组得到了传动误差、轮齿接触迹线和接触椭圆,从而实现了对点接触内斜齿轮副的啮合仿真。  相似文献   

6.
渐开线齿轮动力接触有限元分析及修形影响   总被引:4,自引:1,他引:3  
在ANSYS软件中建立了标准渐开线齿轮与修形齿轮的动力接触有限元模型.利用ANSYS/LS-DYNA的显式动力学计算方法,对不同转速下的齿轮副进行了动力接触分析,得出标准渐开线齿轮由于弹性变形导致较大的啮入冲击,齿轮修形后啮入冲击得到明显改善.齿轮啮合动力接触有限元仿真方法对合理确定齿轮修形量,减小齿轮动载荷具有重要理论意义.  相似文献   

7.
由于变齿厚渐开线啮合副变位系数沿轴向变化的特点,其啮合角、锥角、重合度、不同端截面齿顶圆上的压力角、滑动率等参数与普通渐开线啮合副不同,其啮合效率计算也与普通渐开线啮合副有所区别.分析了变齿厚齿轮啮合副效率的计算特点和影响因素,如变位系数对变齿厚齿轮副重合度和啮合效率的影响;在此基础上,提出了一种新型效率计算方法;通过...  相似文献   

8.
推导出点接触齿轮副齿面滑动系数的计算公式,并分别针对齿轮副的不同组合形式,计算交错轴渐开线斜齿圆柱齿轮传动的滑动系数,绘制该齿轮副的滑动曲线.通过算例,研究了交错轴渐开线斜齿圆柱齿轮副滑动系数的特性.  相似文献   

9.
<正> 我们知道,用标准的渐开线剃齿刀剃出的齿轮会产生中凹现象。产生中凹的原因是:交错轴渐开线圆柱齿轮啮合中,其齿轮齿形在每一瞬间的接触为点接触。当剃齿刀和工件的法向重叠系数大于1而小于2时,有时是一点接触,有时为两点接触。对剃齿的切削过程来说,当施加在被剃齿轮和剃齿刀两轴间的径向压力不变时,反应在单对齿啮合区的齿面压力显然要比两对齿啮合区的压力大。这就产生了  相似文献   

10.
在渐开线齿轮传动中 ,齿廓上各啮合点处的滑动磨损程度是由滑动系数的大小来衡量的 ,现根据滑动系数的定义和齿轮的啮合原理推导出了两齿廓间滑动系数的数值计算公式 ,为齿轮传动中的滑动磨损提供了一种方便实用的计算方法  相似文献   

11.
角接触球轴承的静态接触分析   总被引:2,自引:0,他引:2  
介绍了基于经典Hertz弹性接触理论的解析计算方法和有限元仿真分析法.实例计算结果表明,在轴承工况相同的条件下,两种分析方法得到的接触特性参数的一致性较好,但各有特点.解析计算法编程复杂、解算难度大,只能算出接触区的主参数,而有限元法边界设置十分复杂、技术性强,可仿真轴承接触区的工作状态,且表达形象、直观.  相似文献   

12.
角接触球轴承接触角的测量分析   总被引:1,自引:1,他引:1  
在分析接触角测量原理、游隙与原始接触角的关系基础上,通过实例重点介绍了轴向载荷作用下轴承接触角的变化,并指出在检测轴承接触角时应考虑轴向载荷对接触角的影响。  相似文献   

13.
高速角接触球轴承接触角的求解分析   总被引:1,自引:0,他引:1  
在系统分析角接触球轴承动态特性辅助方程组的基础上,明确了各辅助方程最终都是接触角的函数的规律,建立了变量传递关系图.根据高速角接触球轴承运转时内、外接触角的变化,提出了基于接触角迭代的球轴承动态特性求解方法,将动态方程组变为接触角和接触变形的函数形式,并总结出了选取接触角初始值的一般规律,使得接触角初始值的选取接近真实解,缩短了迭代的求解过程.最后通过算例说明了本方法的可行性.  相似文献   

14.
针对机床高速角接触球轴承复杂工况下的接触分析问题,首先利用ANSYS软件建立了有限元分析模型对球-平面接触进行有限元分析,将分析结果与赫兹公式理论解进行比较,验证有限元接触分析的正确性;然后分析了网格细化程度对计算精度的影响;最后建立了完整的角接触球轴承参数化模型,分析载荷、转速作用下的应力分布。得出如下结论:随着载荷的增大,每个球与内外圈的接触应力均增大,且与内圈的接触应力大于与外圈的接触应力;随着转速的增大,球与外圈的接触应力增大,而与内圈的接触应力减小。为角接触球轴承耦合热应力等的分析提供了方法。  相似文献   

15.
表面粗糙度对微动状态下接触面的接触压力和剪切摩擦力有着显著影响.在这项研究中,创建Python脚本将Matlab中利用Weierstrass-Mandelbrot函数构造的分形表面轮廓坐标导入ABAQUS中,并使用样条曲线拟合轮廓坐标,从而构建包含粗糙表面的二维柱面/平面接触模型.采用有限元方法研究考虑粗糙表面接触的接触压力和剪切摩擦力分布,并讨论材料弹性、弹-塑性和载荷幅值对剪切摩擦力的影响.结果表明,粗糙表面的存在导致接触压力分布为非光滑曲线,局部应力集中程度高;当表面粗糙度较大时,接触面上接触压力的分布是离散的.同时发现,不同材料接触副下,剪切摩擦力沿粗糙表面的分布差异明显.  相似文献   

16.
现代齿轮对高功率密度、长寿命、高可靠性的要求迫切需要对齿面接触与疲劳行为进行深入研究。提出了一种先进的齿轮接触数值模型,可以考虑非牛顿润滑流体、齿面冠状修形、齿面几何运动学参数、工况、涂层材料等因素对齿面接触压力、齿面摩擦、油膜厚度及次表面应力的影响。该模型不仅为开发国产齿轮设计分析软件提供支撑,同时也可配合试验验证,为提高工程实际中的齿轮寿命与可靠性提供参考。  相似文献   

17.
在机械结合面中存在的接触刚度和接触阻尼影响加工过程中机械表面的质量。提出了弹性浮动研磨过程中的接触刚度和基础阻尼的计算方法,采用实验的方法测出振幅与时间的数据,再利用曲线拟合的方法拟合出接触刚度和接触阻尼值。  相似文献   

18.
通过切削试验 ,研究了限制接触刀具前刀面的刀—屑接触长度逐渐减小时切削力的变化规律。试验结果表明 :当刀具前刀面刀—屑接触长度减小时 ,前刀面上的法向力Fn 和切向力Ff 呈非线性减小 ,且Ff-l曲线存在两个拐点 ,根据这两个拐点可间接测量前刀面的刀—屑接触长度L和紧密型接触长度lf1。  相似文献   

19.
本文对冲击作用的力学行为进行了一系列研究,是进行冲击消应力研究的基础。基于弹塑性理论对焊接应力应变场进行了模拟分析,在接触理论的基础上,采用接触单元技术建立冲击-接触问题的有限元模型,计算分析冲击接触的力学行为与锤击效果。  相似文献   

20.
利用有限元软件ANSYS,建立了高速精密角接触球轴承接触分析的三维有限元动态分析模型,对角接触球轴承在实际工况条件下的应力应变状况进行了有限元仿真分析,直观再现了轴承在工况条件下接触区的应力、应变状况。实例计算表明,有限元分析结果与解析计算结果吻合良好,从而验证了三维接触模型的网格划分、接触算法及边界条件的正确性。同时表明,有限元理论在处理接触问题时是有效的,为进一步研究角接触球轴承的使用性能提供了可靠基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号