首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
由于行星齿轮箱振动信号的故障特征难被提取,故采用变分模态分解(VMD)能量熵与支持向量机(SVM)相结合的方式实现行星齿轮箱故障诊断.首先利用VMD方法将振动信号分解为不同尺度的内禀模态函数(IMF)并提取各IMF的能量熵值构成特征矩阵,其次利用粒子群算法(PSO)对支持向量机的惩罚因子和核函数优化,最后将特征矩阵输入支持向量机进行故障模式识别.通过行星齿轮箱的实验研究,验证了该方法的有效性并且识别准确率高达99.625%.  相似文献   

2.
由于行星齿轮箱振动信号的故障特征难被提取,故采用变分模态分解(VMD)能量熵与支持向量机(SVM)相结合的方式实现行星齿轮箱故障诊断.首先利用VMD方法将振动信号分解为不同尺度的内禀模态函数(IMF)并提取各IMF的能量熵值构成特征矩阵,其次利用粒子群算法(PSO)对支持向量机的惩罚因子和核函数优化,最后将特征矩阵输入支持向量机进行故障模式识别.通过行星齿轮箱的实验研究,验证了该方法的有效性并且识别准确率高达99.625%.  相似文献   

3.
滚动轴承处于早期故障阶段时,故障冲击特征成分难以提取,为了从轴承故障振动信号中提取特征参数,对轴承故障振动信号进行变分模态分解(Variational Mode Decomposition,VMD),得到若干个本征模态分量(IMFs),计算各个IMF的能量熵与样本熵,并利用主成分分析方法(PCA)对其进行特征融合。最后利用粒子群算法(PSO)优化的支持向量机(SVM)对融合特征进行故障模式识别。轴承故障实验分析结果表明,所提方法能够有效实现滚动轴承故障诊断。  相似文献   

4.
为有效提取非线性非平稳特性的柱塞泵故障特征,提高故障诊断准确率,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)模糊熵和支持向量机(Vupport Vector Machine,SVM)相结合的柱塞泵故障诊断方法。首先将信号经过VMD分解形成K个固有模态分量(Intrinsic Modal Component,IMF);然后确定IMF个数,提出了基于峭度分析的IMF个数确定方法;其次取峭度值较大的IMF并计算其模糊熵,确定了各状态下相应的模糊熵;最后将模糊熵作为特征向量输入SVM进行故障识别,准确率可达98.3%。将该方法与经验模态分解(Empirical Mode Decomposition,EMD)模糊熵-SVM、VMD模糊熵-BP神经网络对比,结果表明,VMD模糊熵和SVM相结合的方法在柱塞泵故障诊断中具有优越性。  相似文献   

5.
针对传动轴系振动信号故障特征难以提取的问题和进行故障诊断时难以获得大量故障样本的实际情况,提出了一种基于VMD和PSO-SVM相结合的传动轴系故障诊断方法。首先,将传动轴系振动信号进行VMD分解,得到本征模态函数IMF;然后,计算IMF的能量值和对应的能量熵值;最后,用粒子群优化(PSO)优化支持向量机(SVM)的参数,并将归一化处理后IMF的能量值及能量熵值作为特征向量,输入到PSO-SVM中来判断传动轴系的工作状态和故障类型。实验结果表明,该方法故障诊断准确率达到94. 44%,可以准确、有效地对传动轴系进行故障诊断。  相似文献   

6.
针对机械设备的齿轮运行受环境噪声影响严重以及难以获得大量故障样本的问题,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)能量熵特征与支持向量机相结合的齿轮故障诊断方法。首先是利用变分模态分解对机械振动信号进行处理得到若干个模态分量,同时利用传统的经验模态分解(EMD)对相同信号进行分解再对比两种方法的分解效果,然后计算变分模态分解各模态分量的能量熵作为特征值,最后将特征值作为支持向量机的输入进行故障诊断。实验结果表明VMD可以较好的将复杂的振动信号分解并且一定程度抑制模态混叠现象的发生,以VMD能量熵特征与支持向量机相结合的方法可以迅速、有效的实现齿轮的故障诊断。  相似文献   

7.
针对齿轮故障的非线性、非稳定性特点和单个分类器在故障诊断中准确率低的问题,提出了一种基于变分模态分解(VMD)和随机森林(RF)的齿轮故障识别方法.首先,采用变分模态分解将振动信号分解成有限个本征模态函数(IMFs),并与总体平均经验模态分解对比其分解效果;其次,计算各模态函数的能量熵,将能量熵作为评判齿轮状态的标准,...  相似文献   

8.
变流器是实现风电机组并网运行的关键电力装备,在外界环境因素、内部电压电流应力作用下,其功率器件易发生机械或电气故障。该文提出一种基于变分模态分解(VMD)小波包能量熵与支持向量机(SVM)的永磁同步风电机组变流器故障诊断方法。首先,对风电机组网侧变流器的输出电流进行变分模态分解,得到多个固有模态分量;然后,利用小波包分解提取出各模态分量的小波包能量熵作为故障特征向量,以减少故障特征的维数。最后,将约简的故障特征向量输入SVM中进行训练和故障识别。研究结果表明,所提方法可对网侧变流器的典型单一和双开路故障进行诊断,对提升永磁同步风电变流器的可靠性和安全性具有现实指导意义。  相似文献   

9.
10.
《机械科学与技术》2017,(6):915-918
为实现小样本情况下对滚动轴承进行故障检测和分析,提出了基于局部均值分解(LMD)的能量熵和支持向量机(SVM)相结合的滚动轴承故障诊断方法。利用LMD信号处理方法将滚动轴承振动信号分解成有限个乘积函数(PF)分量,通过计算PF分量的能量熵进行故障特征提取,然后将提取的特征输入到SVM分类器中进行训练及测试,最终实现对滚动轴承的故障诊断。实验数据显示,在仅有少量样本条件下,LMD能量熵和SVM相结合的方法能够精确地对滚动轴承的故障类型进行识别和分类,这表明该方法对滚动轴承故障诊断的有效性。  相似文献   

11.
针对行星齿轮箱复合故障准确分类问题,应用了改进自适应噪声完备集合经验模态分解(ICEEMDAN)和支持向量机(SVM)相结合的故障诊断方法。首先,将行星齿轮箱的不同故障信号分别进行ICEEMDAN分解,得到各阶内禀模态函数(IMF);其次,利用各阶IMF分量与原信号的相关性大小,剔除虚假的IMF分量;最后,以优选IMF分量的多尺度模糊熵均值作为特征向量,输入到多分类SVM中进行故障分类,分类准确率高达100%,实验结果证明了该方法的可行性。  相似文献   

12.
提出了一种基于多分类支持向量机(简称MSVM)的齿轮箱故障诊断方法。先根据齿轮箱故障机理和振动特点,探讨了齿轮箱故障诊断试验方案。再测取齿轮箱振动信号,并提取了能反映齿轮箱运转信息的时频域特征参数。通过结合投票法和决策树的基本思想,有针对性地构造了多分类支持向量机决策结构并将其应用于齿轮箱故障诊断。实际齿轮箱故障诊断试验结果表明,该决策结构较好地解决了小样本学习问题,避免了人工神经网络进行诊断时出现的过学习、收敛速度慢、泛化能力弱等缺点,能有效应用于齿轮箱故障诊断。  相似文献   

13.
针对行星齿轮箱的故障诊断问题,提出一种参数优化数学形态谱和支持向量机的行星齿轮箱故障识别方法.该方法考虑形态谱参数选择对同型故障一致性和不同故障差异性的影响,通过相对误差指标值的大小选择形态谱最优参数,对形态谱参数进行优化选择,提取故障特征,并采用支持向量机完成行星齿轮箱故障的故障识别.相较传统行星齿轮箱故障诊断而言,...  相似文献   

14.
基于EEMD能量熵和支持向量机的轴承故障诊断   总被引:2,自引:0,他引:2  
提出了一种基于总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和支持向量机(Support Vector Machine,SVM)的轴承故障诊断方法。首先通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(Intrinsic Mode Function,IMF);轴承发生不同的故障时,信号在不同频带内的能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断轴承的工作状态和故障类型。实验结果表明,文中提出的方法能有效地应用于轴承的故障诊断。  相似文献   

15.
将非线性时间序列的局部投影消噪算法引入到故障诊断领域中,并应用改进的局部投影算法对齿轮箱箱体表面振动信号进行消噪,最后通过计算关联距离熵来进行齿轮箱故障诊断,实验证明,该方法能达到很好的诊断效果.  相似文献   

16.
何雷  刘溯奇 《机械设计与制造》2021,369(11):56-59,64
针对特种车辆变速箱工作环境恶劣、故障模式难以识别的问题,在现有方法基础上,将EMD分解和AR谱估计相结合,应用于变速箱故障诊断中.首先,在自行搭建的实验台上采集变速箱正常、轴承间隙故障、外环压痕、齿轮断齿4种典型状态下的振动信号;然后采用EMD-AR谱进行分析,对比不同状态下信号前6个IMF分量的AR谱,再提取EMD-AR谱能量特征值,将特征值输入到构建好的SVM分类器中,根据输出结果识别变速箱的故障类型.结果表明,该方法能有效应用于特种车辆变速箱故障诊断,诊断正确率达到94.5%,为其他特种变速箱诊断提供了一种有效的参考途径,有一定工程实用价值.  相似文献   

17.
针对强噪声环境下齿轮早期故障特征信号微弱,故障特征信息难以提取的问题,提出了变分模态分解(Variational Mode Decomposition,VMD)和最小熵反褶积(Minimum Entropy Deconvolution,MED)的诊断方法。首先,利用VMD对采集到的齿轮故障振动信号进行自适应分解,得到一系列窄带本征模态分量(band-limited intrinsic mode functions,BLIMFS),由于噪声的干扰,从各个模态分量的频谱中很难对故障做出正确的判断;然后依据相关系数准则,选取包含故障特征信息较丰富的分量进行MED滤波处理以消除噪声影响,凸显故障特征信息。最后对降噪后的信号进行Hilbert包络解调分析,即可从包络谱中准确地识别齿轮故障特征频率。通过仿真信号和齿轮箱实验数据对所提方法进行了验证,结果表明,该方法能够有效地降低噪声的影响,准确地提取齿轮早期故障信号中微弱的特征信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号