共查询到14条相似文献,搜索用时 67 毫秒
1.
2.
使用电沉积的方法制备导电聚噻吩修饰的碳毡及在沉积物中添加甲硫氨酸组成一种新型双改性阳极,以此构建海底沉积物微生物燃料电池,并对阳极的电化学性能和电池性能进行测试。结果表明,双改性阳极表面微生物的数量为空白组的11.30倍,生物膜电容是空白组的1.4倍,说明双改性阳极提高了微生物的数量;双改性阳极循环伏安电容量(302.6 F/cm~2)是空白组(38.20 F/cm~2)的8.0倍,峰电流密度为5.980 A/m~2,交换电流密度(48.29×10~(-3)m A/cm~2)是空白组(0.073 7×10-3m A/cm~2)的651.3倍,说明双改性组的氧化还原电化学活性、抗极化能力和电子转移动力学活性显著提高;双改性电池的输出功率(190.6 m W/m~2)是空白组(71.8 m W/m~2)的2.7倍,说明双改性方法提高了电池阳极的电化学性能和电池性能。 相似文献
3.
采用电沉积法和浸渍法制备了氧化锡/多壁碳纳米管(SnO_2/MWCNTs)复合材料,并首次将其应用在海底沉积物微生物燃料电池(MSMFCs)的阳极改性,测试分析SnO_2/MWCNTs改性阳极的电化学性能和由其组成的电池性能。结果表明,SnO_2/MWCNTs复合阳极的氧化还原电化学活性和电子转移动力学活性分别是空白组的28.26倍和983.7倍;电容性能是空白组的43.14倍;阳极电荷转移电阻约是空白组的1/4。复合改性阳极组MSMFCs的最大功率密度(1 085.1 m W/m2)是空白组的2.17倍。机理分析表明,MWCNTs提高了阳极的导电性,SnO_2使氧化还原反应更容易进行,阳极的电容性能增加;在特殊的海洋弱碱条件下,SnO_2和MWCNTs的增强协同作用使复合改性阳极表现出更加优异的性能。 相似文献
4.
以吡咯为单体、三氯化铁为氧化剂,采用反相微乳液聚合法,分别在十二烷基苯磺酸钠(SDBS)溶液中和含有多壁碳纳米管( MWCNTs)的十二烷基苯磺酸钠(SDBS)溶液中,通过化学氧化法制得了聚吡咯纳米颗粒和聚吡咯/多壁碳纳米管(PPy/MWCNTs)导电复合材料.利用SEM、TEM、FT-IR、XRD和四探针电导率议对复合材料进行了表征.结果表明,当SDBS浓度为0.0120mol/L时所制备的聚吡咯纳米颗粒的电导率在1.00S/cm左右;在含有MWCNTs的SDBS溶液中,单体在SDBS的胶束内聚合,表面活性性剂及其胶束吸附在MWCNTs的表面,表面活性剂的浓度和碳纳米管的用量对PPy/MWC 相似文献
5.
Fenton试剂改性海底生物燃料电池阳极及电化学性能 总被引:1,自引:0,他引:1
阳极材料直接影响海底生物燃料电池的性能。本文采用一种新型改性试剂—Fenton试剂对石墨阳极进行改性处理。结果表明,改性后电极表面主要引入了羟基和羰基,接触角从82°减小到48°,亲水性明显提高。塔菲尔曲线显示,改性前后交换电流密度分别为0.05 A/m2、0.17 A/m2,电极的动力学活性显著增加,提高了两倍之多。改性和未改性电池的最大输出功率密度分别为33.21 mW/m2、20.27 mW/m2,提高了64%。这是由于阳极表面处理后引入的羟基和羰基充当了电子转移介体,明显提高了电极反应动力学活性,增加了阳极表面细菌吸附数量,加速了阳极反应,提高了电池性能。该类高性能阳极材料可望用于海底生物燃料电池的开发。 相似文献
6.
聚吡咯/多壁碳纳米管的合成及电化学行为 总被引:1,自引:0,他引:1
在含有多壁碳纳米管(MWCNT)的十二烷基苯磺酸钠(SDBS)溶液中电化学氧化吡咯(Py)制得聚吡咯/多壁碳纳米管(PPy/MWCNT)导电复合膜。研究了聚合温度、电流密度、吡咯浓度对PPy/MWC-NT复合膜沉积量的影响,采用交流阻抗谱(EIS)法研究了该导电复合膜的电化学行为,并用扫描电子显微镜对其表面形貌进行了观察。实验结果表明,随着温度的降低、电流密度及吡咯浓度的增大,复合膜沉积量变大。与纯PPy膜相比,PPy/MWCNT复合膜有更好的电子传递行为,而复合膜表面更加粗糙、疏松。 相似文献
7.
首次将四氧化三钴/石墨(Co_3O_4/G)复合材料用于海底沉积物微生物燃料电池(MSMFCs)阳极改性,并对阳极电化学性能和电池性能进行研究。结果表明,Co3O4/G复合改性阳极表面的微生物附着数量是空白组的6.1倍;其氧化还原电化学活性和电容特性分别是空白组的16.2倍和31.0倍;交换电流密度达到1.366×10-3m A·cm-2,电子转移动力学活性是空白组的215.6倍,且其抗极化能力最强;电荷转移电阻降至空白组的2/5,并且双电层电容和生物膜电容均得到增加;其组成电池的功率密度为735.1 m W/m2,是空白组电池的4.6倍。机理分析表明,Co_3O_4和石墨的协同作用使复合改性阳极的电容性能和电子转移速率得到提高。 相似文献
8.
制备了3种阳极(未改性阳极、氨水改性阳极、NH_4HCO_3电化学氧化改性阳极)组建海底沉积物微生物燃料电池(MSMFCs),探究阳极的不同氨改性方法对含油MSMFCs电化学性能和石油降解率的影响。结果表明,电化学氧化改性阳极的电容特性是未改性阳极组的1.78倍,并且其抗极化能力最强,交换电流密度为2.57×10~(-2)A·m~(-2),是未改性的5.00倍;由电化学氧化改性阳极组建的电池的最大输出功率密度是1.53×102m W·m~(-2),较空白组的增加3.56倍,且该电池阳极沉积物中石油的降解率是空白组的10.40倍,这是因为改性阳极表面连入了有利于微生物附着的酰胺基团和氨基基团,提高了电池电化学性能并加速了石油的降解。 相似文献
9.
选取500℃、650℃、800℃对石墨碳毡阳极进行氨气处理,分别构建海底沉积物微生物燃料电池(MSMFCs)。结果表明:改性后其微生物活性和电化学活性均明显提高。500℃改性阳极表面微生物数量(10.420×10^11 cfu/m^2)是Blank组的2.9倍,说明500℃氨气改性增加了微生物的附着量。500℃改性阳极循环伏安电容性能(62.1 F/m^2)是Blank组的2.0倍,表明其氧化还原电化学活性显著提高;电荷转移电阻(14.46Ω)为Blank组(62.39Ω)的1/4,交换电流密度是Blank组的1.1倍,说明500℃氨气处理提高了阳极的电子转移动力学活性和抗极化能力。500℃改性阳极的输出功率(60.67 mW/m^2)为Blank组(29.17 mW/m^2)的2.1倍,其长期输出电压达到692 mV且产电更加稳定,电池性能显著提升。 相似文献
10.
11.
泡沫石墨是一种新型阳极材料, 对其进行改性是提高海底微生物燃料电池性能的重要途径之一。本文研究了混酸改性泡沫石墨阳极及其电化学性能。研究表明:改性后泡沫石墨表面生成羟基、羧基等含氧官能团; 改性阳极接触角降低了24.5°, 润湿性提高, 有利于微生物附着; 交换电流密度达到6760.8 mA/m2, 动力学活性提高了53.7倍。研究还发现改性后阳极电位降低了100 mV, 电池开路电位达到865 mV (未改性750 mV), 最大输出功率密度为358.1 mW/m2, 提高了2.4倍。三个月放电测试显示, 改性阳极和电池具有相对稳定的性能。同时, 本文初步分析了改性后阳极动力学活性增加和电位降低的原因。该研究结果为构建高输出电压和功率的海底微生物燃料电池提供了依据。 相似文献
12.
以天然海泥(BMFC-0)、添加尿素的海泥(BMFC-1)和添加乳酸的海泥(BMFC-2)构建海底沉积物微生物燃料电池(BMFCs),研究外源添加营养物质对BMFCs电池性能及电极电化学性能的影响。结果表明,尿素和乳酸这两种营养物质明显影响海泥中微生物的数量和电化学性能;计数结果表明,BMFC-2中的细菌数量最多,约为1.08×10~(11)cfu/m~2,分别是BMFC-1和BMFC-0的2.97倍和13.5倍。Tafel测试结果表明,BMFC-2阳极生物膜电化学活性高于BMFC-1和BMFC-0;BMFC-1和BMFC-2的阳极电子交换动力学活性分别是BMFC-0的1.30倍和1.63倍。通路状态下,BMFC-2的输出电压最大(约520 mV),BMFC-0的输出电压最低(约175 mV);BMFC-2的最大输出功率密度为96.57 mW·m~(-2),分别是BMFC-0(10.94 mW·m~(-2))和BMFC-1(51.57 mW·m~(-2))的8.83倍和1.87倍。根据外源营养物质对阳极表面生物膜电容特性影响的分析,提出了外源营养物提高电池性能的模型,阴极表面细菌数量增多,代谢产生的电子数量增加,生物膜增厚,生物模电容和双电层电容增大。 相似文献
13.