首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
方建筠  栗卓新 《焊接学报》2011,32(1):61-64,68
采用电弧喷涂制备TiB2陶瓷颗粒增强的NiCr-TiB2,NiCr-TiB2/Al2O3和304L-TiB2及304L-TiB2/Al2O3四种金属基复合涂层.采用光学显微镜、扫描电子显微镜(SEM)结合透射电子显微镜(TEM)观察和详细分析了TiB2陶瓷颗粒增强复合涂层的显微组织及微观结构,探讨涂层的形成机理.结果表...  相似文献   

2.
Corrosion resistance of plasma sprayed aluminia and chromia coatings. Effect of coating sublayers NiCr and NiAl The corrosion resistance of plasma sprayed Al2O3 and Cr2O3 coatings has been studied in 3.5% NaCl and 10% NaOH solutions. In this context the effect of intermediate coatings (NiCr and NiAl) on the protective efficiency of the ceramic coatings has been evaluated, too. The corrosion rates were determined by gravimetry, corrosion potential and polarisation resistance measurements. The two ceramic coatings afford efficient protection. In the alkaline solutions NiCr is superior, while in the chloride solution NiAl offers better protection.  相似文献   

3.
An Al2O3 ceramic coating (A), a 13 wt.% TiO2-Al2O3 (13TA) composite ceramic coating, and a Ni-Al-13wt.%TiO2-Al2O3 (NA-13TA) gradient composite ceramic coating were prepared on Q235 steel by plasma spraying. The corrosion behavior of samples sprayed with these coatings in a boiling 5% HCl solution was investigated. It was shown that an A ceramic coating and a 13TA composite ceramic coating were destroyed after immersion for 17 and 23 h, respectively. The NA-13TA gradient composite ceramic coating was still sound after 14 days of immersion. The corrosion resistance of samples with the NA-13TA gradient composite ceramic coating was sharply improved due to the decreased amount of connected pores in the coating. The corrosion of the sample sprayed with the gradient ceramic coating included the partial corrosion of the surface ceramic coating and the interlayer coatings. The corrosion weight loss depended on the degree of open porosity.  相似文献   

4.
Finishing of thermally sprayed metallic, ceramic, and cermet coatings is required to meet tolerances and requirements on surface roughness in most industrial applications. Conventional machining is a costly and time-consuming process, and is difficult to automate. Therefore, this study investigates and develops a new technique highly amenable for automation: fast regime—fluidized bed machining (FR-FBM). Atmospheric plasma sprayed TiO2, Cr2O3, and HVOF-sprayed WC-17%Co and Tribaloy-800 coatings, deposited on AISI 1040 steel substrates, were subjected to FR-FBM treatment. The effects of the leading operational parameters, namely, abrasive size, jet pressure, and processing time, were evaluated on all coatings by using a two/three-levels full factorial design of experiments. The FR-FBM treated surfaces were observed by FE-SEM and their surface finishing was evaluated by contact profilometry. Significant improvements in surface finishing of all the machined thermally sprayed coatings can always be detected, with FR-FBM being able to guarantee the precision and to ensure the closest geometrical tolerances.  相似文献   

5.
A successful combination of insulating substrates with conducting metal coatings produced by cold spraying could open new industrial application areas like the fabrication of power electronic components. For minimizing the number of industrial process steps, insulating ceramic layers should ideally be processed by thermal spray techniques. Thus, this study investigates the impact behavior and coating formation of ductile metallic feedstock powders onto brittle ceramic coatings. With respect to high electrical conductivity of the metallic lines and good electrical insulation of the ceramic interlayer, copper was cold gas sprayed on previously thermally sprayed Al2O3 coatings. Successful cold coating formation requires different strategies for the activation of the ceramic layer to increase adhesion and to avoid brittle failure. These both can be achieved either by applying a bondcoat on the ceramic layer or using heated substrates during the cold spray process.  相似文献   

6.
Corrosion fatigue behavior of a steel with sprayed coatings   总被引:1,自引:0,他引:1  
This paper describes the corrosion fatigue behavior and fracture mechanisms of a steel with different sprayed coatings. Rotating bending fatigue tests were conducted in 3% NaCl solution using specimens of a medium carbon steel with sprayed coatings of a ceramic (Cr2O3), a cermet (WC-12%Co) and two metals (Ni-11 % P and Al-2% Zn). The corrosion fatigue process was basically the same for ceramic, cermet, and Ni-11 % P sprayed specimens. That is, the corrosive media could be supplied from the specimen surface to the substrate through cracks initiated during fatigue cycling and/or pores in the coatings, and thus corrosion pits were generated followed by subsequent crack initiation and growth in the substrate. The corrosion fatigue strength of ceramic sprayed specimens was slightly improved compared to that of the substrate steel because the under-coating (Ni-5%A1) could impede the penetration of the corrosive media although the ceramic coating had a poor resistance to cracking under cyclic loading. Cermet sprayed specimens also exhibited improved corrosion fatigue strength because of the high resistance to cracking and the low volume fraction of pores of the coating. In Ni-11 % Psprayed specimens, cracks were initiated in the coating even at low stress levels; thus the corrosion fatigue strength was the same as that of the substrate. Anodic dissolution took place in Al-2 % Zn coating because the coating was electrochemically poor, and thus the substrate was cathodically protected. Therefore, the corrosion fatigue strength of Al-2 % Zn sprayed specimens was enhanced to as high as the fatigue strength of the substrate in room air. Based on the experimental results, a dual-layer coating consisting of WC-12%Co and Al-2%Zn was fatigue tested. The coating was effective at low stress levels and exhibited long life under conditions where corrosion fatigue strength was critical.  相似文献   

7.
The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al2O3 oxides. The crystal Al2O3 phase includes κ-Al2O3, θ-Al2O3 and β-Al2O3. The grain size of the κ-Al2O3 crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic coatings.  相似文献   

8.
In this paper, air plasma spray Al2O3-13% TiO2 coatings were produced by two type of feedstock powders (agglomerated nanostructured and conventional). Mechanical properties of coatings including hardness, toughness, fatigue, and wear behavior as well as grindability of coatings were evaluated and compared. We report that due to the presence of nanostructure zone in microstructure of air plasma sprayed Al2O3-13% TiO2 nanostructure coatings, a significant gain is observed in toughness, grindability, and fatigue lifetime in nanostructure coating over its counterpart conventional coating.  相似文献   

9.
The fracture toughness of plasma-sprayed Al2O3 coatings in terms of critical strain energy release rate G Ic was investigated using a tapered double cantilever beam (TDCB) approach. This approach makes the fracture toughness be measured only using the critical fracture load disregarding crack length during test. The Al2O3 coatings were deposited under different spray distances and plasma powers to clarify the effect of spray parameters on the G Ic of the coatings. The fracture surfaces were examined using scanning electron microscope. On the basis of an idealized layer microstructure model for thermal sprayed coatings, the theoretical relationship between the cohesive fracture toughness and microstructure is proposed. The correlation between the calculated fracture toughness and observed value is examined. It was found that the fracture toughness of plasma sprayed Al2O3 coatings is not significantly influenced by spray distance up to 110 mm, and further increase in spray distance to 130 mm resulted in large decrease in the fracture toughness of the coatings. The G Ic value predicted based on the proposed model using lamellar interface mean bonding ratio and the effective surface energy of bulk ceramics agreed well with the observed G Ic data. Such agreement evidently shows that the fracture toughness of thermally sprayed ceramic coatings at the direction along coating surface is determined by lamellar interface bonding.  相似文献   

10.
The starting materials of Al2O3, TiO2, ZrO2 and CeO2 nanoparticles were agglomerated into sprayable feedstock powders and plasma sprayed to form nanostructured coatings. There were net structures and fused structures in plasma sprayed nanostructured Al2O3–13 wt.%TiO2 coatings. The net structures were derived from partially melted feedstock powders and the fused structures were derived from fully melted feedstock powders. The nanostructured Al2O3–13 wt.%TiO2 coatings possessed higher hardness, bonding strength and crack growth resistance than conventional Metco 130 coatings which were mainly composed of lamellar fused structures. The higher toughness and strength of nanostructured Al2O3–13 wt.%TiO2 coatings were mainly related to the obtained net structures.  相似文献   

11.
In this article, the results of corrosion investigations performed on thermally sprayed ceramic coatings with different compositions in the Al2O3-TiO2 system (Al2O3, Al2O3-3%TiO2, Al2O3-40%TiO2, and TiO x ) are presented. The coatings were deposited on corrosion-resistant steel substrates using atmospheric plasma spraying (APS) and high-velocity oxy-fuel (HVOF) spraying processes and characterized by means of optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). The corrosion properties were investigated in 1 N solutions of NaOH and H2SO4, at room temperature, 60 °C, and 85 °C, as well as in hydrothermal conditions with deionized water at 100 °C and 200 °C. The corrosion stability of the coatings depended on coating characteristics (spraying method, microstructure, and crystalline phase composition) and the corrosive environment (media, test temperature, and duration). In contrast to expectations, APS-sprayed coatings were found to be more corrosion-resistant than the HVOF-sprayed coatings. Addition of TiO2 to Al2O3 increased the corrosion stability, especially for the HVOF-sprayed coatings. In this work, TiO x coatings were found to be more corrosion-resistant than the Al2O3-based coatings.  相似文献   

12.
Metallic glass has excellent functions such as high toughness and corrosion resistance. Therefore it is one of the most attractive materials, and many researchers have conducted various developmental research works. However, the metallic glass material is expensive and a composite material is preferred for the industrial application. Thermal spraying method is one of potential candidates to produce metallic glass composites. The gas tunnel type plasma system, which has high energy density and efficiency, is useful for smart plasma processing to obtain high quality ceramic coatings such as alumina (Al2O3) and zirconia (ZrO2) coatings. Also, the gas tunnel type plasma spraying can produce metallic glass coatings. In this study, the Fe-base metallic glass coatings were formed on the stainless-steel substrate by the gas tunnel type plasma spraying, and the microstructure and mechanical property were investigated. The Fe-base metallic glass coatings of about 200 μm in thickness were dense with a Vickers hardness of about Hv = 1100 at plasma current of 300 A. The abrasive wear resistance of Fe-base metallic glass coating was higher than the SUS substrate.  相似文献   

13.
A study was performed to assess the suitability of several plasma arc sprayed coatings applied to graphite crucibles for melt processing AI2O3ZrO2, AI2O3 Y2O3, and AI2O3 ceramics. Coatings of W, Ta over W, and Re over W were evaluated. Pressed compacts of AI2O3 ZrO2, AI2O3Y2O3, and AI2O2 were each placed in refractory metal-coated graphite crucibles and heated to 2040,2150, and 2200 ‡, respectively. Compatibility of the coating/ceramic oxide systems was evaluated by optical and scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and combustion chromatography. The Ta over W coating system was chemically nonreactive with all three molten oxides studied.  相似文献   

14.
Thermally sprayed alumina coatings are widely used in a range of industrial applications to improve wear and erosion resistance, corrosion protection and thermal insulation of metallic surfaces. These properties are required for many components to be used for production processes in the paper and printing industry.Another appropriate method to produce ceramic coatings is the plasma electrolytic oxidation (PEO). However PEO can only be applied on self-passivating metals like aluminium, titanium, magnesium and their alloys. The present paper concerns a combination of cost-efficient arc spraying and flame spraying of Al coatings (Al99.5, AlCu4Mg1) on steel substrates and post-treatment by plasma-electrolytic oxidation (PEO). The microstructure and phase composition of generated oxide coatings are examined and discussed. The created Al2O3 layers show outstanding hardness up to 1600 HV0.1, good bonding strength and excellent abrasion resistance compared to atmospheric plasma-sprayed Al2O3-coatings. The results show the superior performance of PEO-coatings and demonstrate their applicability for technical components in extreme operating conditions.  相似文献   

15.
Alumina, Al2O3 + 3 to 40 wt% TiO2, and Al2O3 + 40 wt% ZrO2 coatings were deposited by atmospheric plasma spraying (APS) and detonation gun spraying (DGS). The coatings were evaluated by optical microscopy, microhardness measurements, and X- ray diffraction. Wear resistance of the coatings was evaluated by rubber wheel sand abrasion and particle erosion test methods. Detonation gun- sprayed coatings exhibited more homogeneous microstructures and somewhat higher microhardness than corresponding plasma- sprayed coatings. Small additions of TiO2 (3 wt%) improved both the abrasion and erosion wear resistance, whereas 40 wt% TiO2 significantly decreased the erosion wear resistance of both APS and DGS coatings. Alumina + 40% ZrO2 coatings exhibited the best abrasion wear resistance of both APS and DGS coatings, but the erosion wear resistance of these coatings was lower than that of the Al2O3 and Al2O3 + 3 wt% TiO2 coatings. The best abrasion wear resistance of the coatings studied was obtained with DGS Al2O3 + 40 wt% ZrO2 and Al2O3 + 3 to 40 wt% TiCh coatings. These coatings exhibited lower wear rates than bulk Al2O3. The best erosion wear resistance was obtained with the DGS Al2O3 + 3 wt% TiO2 coating; however, it exhibited a higher wear rate than bulk Al2O3. In general, detonation gun- sprayed coatings showed significantly enhanced abrasion and erosion wear resistance than the corresponding plasma- sprayed coatings.  相似文献   

16.
In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, A12O3, and Cr3C2-MCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. The results from the above tests are discussed here. It is evident that the D-gun sprayed coatings consistently exhibit denser microstructures and higher hardness values than their plasma sprayed counterparts. The D-gun coatings are also found to unfailingly exhibit superior tribological performance superior to the corresponding plasma sprayed coatings in all wear tests. Among all the coating materials studied, D-gun sprayed WC-12%Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al2O3 shows least wear resistance to every wear mode.  相似文献   

17.
Air plasma sprayed TBCs usually include lamellar structure with high interconnected porosities which transfer oxygen from YSZ layer towards bond coat and cause TGO growth and internal oxidation of bond coat.The growth of thermally grown oxide (TGO) at the interface of bond coat and ceramic layer and internal oxidation of bond coat are considered as the main destructive factors in thermal barrier coatings.Oxidation phenomena of two types of plasma sprayed TBC were evaluated: (a) usual YSZ (yttria stabilized zirconia), (b) layer composite of (YSZ/Al2O3) which Al2O3 is as a top coat over YSZ coating. Oxidation tests were carried out on these coatings at 1100°C for 22, 42 and 100h. Microstructure studies by SEM demonstrated the growth of TGO underneath usual YSZ coating is higher than for YSZ/Al2O3 coating. Also cracking was observed in usual YSZ coating at the YSZ/bond coat interface. In addition severe internal oxidation of the bond coat occurred for usual YSZ coating and micro-XRD analysis revealed the formation of the oxides such as NiCr2O4, NiCrO3 and NiCrO4 which are accompanied with rapid volume increase, but internal oxidation of the bond coat for YSZ/Al2O3 coating was lower and the mentioned oxides were not detected.  相似文献   

18.
Thermal barrier coatings (TBC) are extensively used to protect metallic components in applications where the operating conditions include aggressive environment at high temperatures. Isothermal oxidation degrades the performance of these coatings, so this work analyses the mechanical properties (Young's modulus, E, and hardness, H) of TBC and its evolution after thermal exposure in air. ZrO2(Y2O3) top coat and NiCrAlY bond coating were air plasma sprayed onto an Inconel 600 Ni base alloy. The TBC were isothermally oxidized in air at 950 °C and 1050 °C for 72, 144 and 336 h. Depth sensing indentation tests were carried out on the ceramic coating to evaluate E and H in the as-sprayed materials and after isothermal oxidation. An approach based on multiple tests at different loads was used to determine size independent apparent E an H. These mechanical properties, measured perpendicular to the surface, clearly decreased after isothermal oxidation as a consequence of microcracking within the ceramic coating.  相似文献   

19.
High temperature Co- and Ni-based metallic coatings were applied on samples of 310 stainless steel using plasma spray and high velocity oxy fuel (HVOF) methods. The samples were sprayed with Na2SO4, V2O5 and NaCl salt solutions and exposed in air at 900°C to cyclic conditions with an aim to simulate an environment typically encountered in oil refinery operation. Extent of hot corrosion damage was assessed using gravimetric measurements while microstructure of the coatings was examined using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. X-ray diffraction was used to determine phase constitution. The aim of this study was to evaluate and compare the performance of specific coatings in hot corrosive environments. Experimental results indicate that the presence of V2O5 and NaCl serves to enhance hot corrosion while Co-based coatings perform better than Ni-based coating.  相似文献   

20.
This study focuses on cold-gas-sprayed deposition of metallic coatings onto ceramic substrates for application in power electronics. In order to achieve the required surface activation for bonding, the substrate is heated during spraying. The effects of substrate temperature on bond strength and coating properties are investigated for cold-gas-sprayed coatings of copper and aluminum on Al2O3. It is found that the adhesion strengths of the cold-gas-sprayed coatings and that of the single-impacting particles increase with the increasing temperature and roughness of the substrate. Coatings sprayed on heated substrates show relatively low compressive stresses and low hardness, while their electrical conductivity reaches high values of over 90% IACS. Overall, a higher substrate temperature is found to improve the coating properties significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号