首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用了一种新的团簇成分式合金设计方法,对高强导电Cu-Ti合金进行了成分优化和实验验证。根据团簇加连接原子结构模型,Cu-Ti面心立方固溶体的高稳定性化学近程序结构单元可表述为团簇成分式[Ti-Cu_(12)]Cu_(3,6),其中[Ti-Cu_(12)]为以溶质原子Ti为中心的第一近邻配位多面体团簇,并搭配以3或6个连接原子。经过固溶处理(1173 K/2 h)和时效(723 K/4 h)处理,合金[Ti-Cu_(12)]Cu3(质量分数Cu-4.8Ti)的维氏显微硬度为304 MPa,导电率为9.8%IACS,[Ti-Cu_(12)]Cu_6(Cu-4.0Ti)的维氏硬度为283 MPa,导电率达11.3%IACS,其中后者导电性能相当于日本的Cu-3.39Ti合金,且成分点位于性能对成分变化不敏感区域。  相似文献   

2.
利用"团簇加连接原子"结构模型研究了铁素体时效不锈钢的成分规律,确定了BCC Fe-Cr二元基础团簇成分式为[Cr-Fe10Cr4]Cr,其中团簇为以溶质原子Cr为心的周围被10个基体Fe和4个Cr原子包围的菱形十二面体Cr-Fe10Cr4。根据团簇式和相似组元替代形成多元合金化的合金成分式[(Ni16-m-nCumAln)-Fe160Cr64](Cr16-o-p-q-rMooTipNbqVr)。采用铜模吸铸技术制备6 mm的合金棒,分别在1030℃、1150℃下固溶处理0.5 h并在555℃时效3 h。结果表明,合金化的系列合金在1150℃下固溶处理时能获得单一BCC结构,在此基础上时效后系列合金的硬度和强度显著提高,其中[(Ni14Cu2)-(Fe160Cr64)](Cr7Mo6Ti2Nb1)合金在时效处理后具有良好的强韧性配合,分别为HV=397 HV、σ0.2=1017 MPa和σb=1287 MPa、ε=7.7%。  相似文献   

3.
应用“团簇加连接原子”结构模型对镍基高温合金成分进行了解析,指出了这些合金均源自基础团簇式[Cr-Ni12]Cr3,其中[Cr-Ni12]为在FCC结构中以Cr为心的立方八面体团簇,搭配以3个Cr作为连接原子.根据合金化组元与基体Ni的混合焓大小确定其在团簇式中的位置,最终形成多元合金化后的团簇式[(Al/Ti/Nb)-(Ni/Fe/Co)12](Cr/Al)3.采用铜模吸铸快冷技术制备φ10 mm的合金棒,并对其在1373 K保温2h后空冷.结果表明团簇式中含有一个Al时会有细小的γ'相析出,含有两个Al时[Al-(Ni10Fe2)](Cr2Al)合金中γ'相球形析出,粒子尺寸为30 ~ 60 nm;硬度测试表明前者强化效果不明显,后者由于γ'粒子长大使得合金硬度提高.当Al/Ti/Nb等比例占据团簇心部时,[(Al1/3 Ti1/3 Nb1/3)-(Ni10 Fe2)]Cr3合金的硬度最高,为2.86 GPa.  相似文献   

4.
通过光学显微镜、扫描电镜、XRD、DSC测试、硬度测试和拉伸试验等,研究了不同固溶时效处理对Al-Cu-Mn-Er合金显微组织和力学性能的影响。结果表明,铸态合金的最佳固溶时效制度为540 ℃固溶12 h、185 ℃时效6 h。该固溶制度下无过热或“过烧”现象,溶质原子充分扩散,铸造过程产生的残留相大量回溶基体,此时,合金硬度值最高,为142.28 HV0.1,抗拉强度为370.37 MPa,屈服强度为300.34 MPa,伸长率为6.50%。  相似文献   

5.
梁孟超  陈良  赵国群 《金属学报》2020,56(5):736-744
在不同温度和保温时间下对2A12铝合金冷轧板进行了人工时效处理,通过显微硬度和室温拉伸实验测试了合金的力学性能,对不同时效阶段合金的微观组织和析出相进行了表征。研究发现,2A12铝合金冷轧板具有单个时效峰,时效温度越高,达到峰值时效所需的时间越短,时效温度与时间对其力学性能均具有较大影响。随时效时间的增加,合金断裂方式由韧性断裂逐渐转变为沿晶韧窝断裂和穿晶断裂。时效初期合金主要为Cu-Mg团簇强化,峰值时效时为Cu-Mg团簇和GPB区强化,过时效时析出相逐渐转化为稳定的S (Al2CuMg)相。在考虑均质形核与非均质形核的共同作用下,2A12铝合金冷轧板的时效脱溶析出序列为过饱和固溶体(SSS)→Cu-Mg团簇+Sinhomo→Cu-Mg团簇+GPB区+Sinhomo→Cu-Mg团簇+GPB区+Shomo+Sinhomo→S。  相似文献   

6.
对合金丝材进行了不同温度和时间的固溶处理,探究了固溶参数对晶粒尺寸、电阻率、电阻温度系数及屈服强度的影响规律,对比了固溶态和时效态合金的性能差异。结果表明:提升固溶温度或延长保温时间,均使电阻率升高、电阻温度系数下降,有利于改善合金的电学性能;合金晶界移动激活能为674.25 kJ/mol,晶粒生长动力学方程为:D-3.3t=3.80×1030texp-8.11×104T;屈服强度与晶粒尺寸存在关系式:Rp0.2=341.19+354.64D-0.5t;通过950 ℃×7.5 min+430 ℃×0.5 h固溶时效处理后,合金的屈服强度为445 MPa,电阻率为132.2 μΩ·cm,电阻温度系数为2.2×10-6-1,满足制备精密电阻元件的要求。  相似文献   

7.
研究了固溶、固溶后单时效以及固溶后双时效处理对Ti-4Al-5Mo-6Cr-5V-1Nb合金组织和力学性能的影响。结果表明,820℃下固溶0.5 h后,合金中的α相完全溶解;单/双时效合金的硬度均随时效时间增加先升高后降低;合金经300℃/8 h+500℃/8 h双时效处理后可达到4580 MPa的峰值硬度(HV),1462 MPa抗拉强度以及3.4%延伸率,其强度比原始合金高6%,也高于单时效合金。界面能计算结果表明ω相使α相形核的阻力降低50%,促进了α相的析出并细化α板条,从而提升合金的硬度,强度及塑性。  相似文献   

8.
以提高魏氏体组织Ti60合金的拉伸强度与塑性为目标,研究固溶与时效处理对Ti60合金组织与性能演变的影响规律,并优化热处理参数。结果表明,初始魏氏组织晶粒较为粗大,经过固溶与时效处理后,晶粒明显减小,层片状α相明显减少。初始魏氏组织Ti60合金抗拉强度为850 MPa,伸长率为0.9%,1000℃固溶处理后,Ti60合金的抗拉强度达到1100 MPa,伸长率为3.7%。1000℃固溶+600℃8 h时效处理后,抗拉强度达到1200 MPa,伸长率为3.3%。随固溶温度提高,其硬度与抗拉强度增加,伸长率降低。随时效时间延长,硬度先增大后减小。经1050℃固溶+600℃8 h时效处理后Ti60合金具有最大硬度值509 HV。  相似文献   

9.
半固态挤压铸造的A356合金首先在540℃下进行固溶处理,随着固溶温度升高,Mg和Si原子逐渐溶解于基体中,并产生了固溶强化作用。抗拉强度、延伸率和硬度在固溶6 h达到峰值,之后合金力学性能随固溶时间延长而下降。在固溶处理之后合金在180℃下进行了不同时间的时效处理。随着时效时间延长,Mg2Si相逐渐在基体中析出,析出相显著球化细化,尺寸约为2μm。经过对合金组织和力学性能的分析,半固态挤压铸造A356合金的最佳热处理制度为:540℃固溶6h,180℃时效4h。经过固溶和时效处理后的合金抗拉强度达到336 MPa,延伸率达到6.9%,硬度达到1240 MPa,相较于热处理前的性能提升了106.7%。  相似文献   

10.
依据BCC结构中的"团簇加连接原子"模型确定Ti-Mo二元团簇式[MoTi14]Mo1为基础成分式,根据合金化组元Sn、Zr和Nb与基体Ti的混合焓实现其在基础成分式中的组元替换,从而形成多元成分式[(Mo,Sn)(Ti,Zr)14]Nb1。利用铜模吸铸快冷技术制备d 6 mm合金棒状样品,并对其进行950℃保温2 h并水淬。组织结构分析和拉伸力学性能结果表明:低模量Sn、Zr和Nb分别取代基础成分式中高模量的Mo时形成的三元BCCβ-Ti合金结构稳定,且具有较低的弹性模量;当Mo0.5Sn0.5占据团簇心部,Nb作为连接原子,Zr替代部分Ti时形成的低Nb含量的β-Ti合金[(Mo0.5Sn0.5)(Ti13Zr)]Nb1(Ti68.10Mo5.25Sn6.50Zr9.98Nb10.17,质量分数,%)具有最低的弹性模量(为43 GPa),且断裂强度σb为569 MPa,应变ε为5.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号