首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to examine mechanical properties and surface charge characteristics of chitosan/alginate-based films for biomedical applications. By varying the concentrations of chitosan and alginate, we have developed films with varying surface charge densities and mechanical characteristics. The surface charge densities of these films were determined by applying an analytical model on force curves derived from an atomic force microscope (AFM). The average surface charge densities of films containing 60% chitosan and 80% chitosan were found to be ? 0.46 mC/m2 and ? 0.32 mC/m2, respectively. The surface charge density of 90% chitosan containing films was found to be neutral. The elastic moduli and the water content were found to be decreasing with increasing chitosan concentration. The films with 60%, 80% and 90% chitosan gained 93.5 ± 6.6%, 217.1 ± 22.1% and 396.8 ± 67.5% of their initial weight, respectively. Their elastic moduli were found to be 2.6 ± 0.14 MPa, 1.9 ± 0.27 MPa and 0.93 ± 0.12 MPa, respectively. The trend observed in the mechanical response of these films has been attributed to the combined effect of the concentration of polyelectrolyte complexes (PEC) and the amount of water absorbed. The Fourier transform infrared spectroscopy experiments indicate the presence of higher alginate on the surface of the films compared to the bulk in all films. The presence of higher alginate on surface is consistent with negative surface charge densities of these films, determined from AFM experiments.  相似文献   

2.
In this work, plasticized chitosan-based materials were produced through a molten process. A thermo-mechanical treatment was used to achieve chitosan plasticization in the presence of water, acetic acid, and glycerol. Water and glycerol acted as plasticizers, while acetic acid was used as a solvent and plasticizer for chitosan. The influence of acetic acid total content, chitosan/acetic acid solution ratio, and chitosan/glycerol ratio were examined in this study. The various plasticized compounds were blended with a metallocene polyethylene (mPE) and the morphology, rheological, and antibacterial properties of this novel blend system were examined. It was found that an increase in acetic acid content allowed better chitosan dissolution, while a higher glycerol concentration resulted in improved dispersion of the plasticized chitosan phase in the mPE. Following thermo-mechanical treatment, blends presented good antibacterial properties with a reduction of the number of bacteria (non-pathogenic Escherichia coli) by 2 log(CFU/mL) for the chitosan-containing systems with respect to neat mPE. Mechanical properties of the mPE/plasticized chitosan blends were improved by compatibilization with ethylene vinyl acetate, while antibacterial properties were not affected.  相似文献   

3.
采用流动电势技术、 接触角技术及表面轮廓技术分别考察了由不同脱乙酰度壳聚糖制备的海藻酸钠/壳聚糖(ACA)膜的表面电荷分布、 表面亲疏水性、 表面粗糙度, 并以纤维蛋白原为模型, 采用静态吸附实验技术考察了表面性质对蛋白在ACA微胶囊表面的吸附量及吸附构象的影响。结果表明, ACA微胶囊表面净电荷为负, 表面正电荷随脱乙酰度的降低而减少。由脱乙酰度60%~90%壳聚糖制备的ACA膜的表面接触角均为70°左右, 且无显著性差异。ACA微胶囊表面呈颗粒状结构, 表面粗糙度随壳聚糖脱乙酰度的降低而减小。蛋白吸附分析表明, "棒状"的纤维蛋白原分子以"侧向"和"直立" 2种形式吸附于ACA微胶囊表面。当壳聚糖脱乙酰度较低时, 蛋白吸附量较小, 且此时蛋白多以"直立"形式吸附。以上结果表明, 由壳聚糖脱乙酰度带来的ACA微胶囊表面性质差异不仅影响了蛋白吸附量, 而且影响了蛋白吸附方式。   相似文献   

4.
Objective: The aim of this study was to prepare pH-sensitive sodium alginate/calcined hydrotalcite (SA/CHT) hybrid bead with improved the burst release effect of the drug.

Materials and methods: A series of pH-sensitive SA/CHT hybrid beads were prepared by using Ca2+ cross-linking in the presence of diclofenac sodium (DS) and SA. The structure and drug loading of the beads were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The swelling and the drug release of the fabricated beads were investigated by the pH of test medium and CHT content.

Result: The formed positively charged hydrotalcite layers were adsorbed on the negatively charged SA polymer chains through electrostatic interaction and act as inorganic cross-linkers in the three-dimensional network. Compared to pure SA beads, the incorporation of CHT enhanced the drug encapsulation efficiency, improved the swelling behaviors and slowed the drug release from the hybrid beads.

Discussion and conclusions: The electrostatic interaction between hydrotalcite and SA has restricted the movability of the SA polymer chains, and then slowed down swelling and dissolution rates in aqueous solutions. The results provided a simple method to moderate drug release and matrix degradation of the SA beads.  相似文献   

5.
6.
海藻酸钠/碳纳米管复合凝胶球的制备及其吸附性能   总被引:1,自引:0,他引:1  
提出一种安全简单污水处理的方法,以物理共混的方法利用海藻酸钠分散未经任何处理的原始多壁碳纳米管,得到均匀分散的海藻酸钠/碳纳米管(SA/MWNTs)水溶液,以CaCl2作为凝固浴,制备SA-Ca和SA/MWNTs-Ca复合凝胶球,利用凝胶球对甲基橙(MO)溶液进行吸附脱色研究。试验结果表明:海藻酸钠凝胶球对甲基橙去除率较低,随着碳纳米管含量的增加,当MWNTs增加到2.5g/L,SA/MWNTs-Ca凝胶球的吸附性能提高了3倍;并且随着凝胶球量的增加,去除率迅速增加,当凝胶球质量浓度从1~50g/L时,去除率有显著提高,增加近10倍;溶液pH值对吸附性能的研究还表明,溶液的pH值对SA/MWNTs-Ca凝胶球的吸附性能有较大的影响,pH值较低时有利于SA/MWNTs-Ca凝胶球对MO的吸附。  相似文献   

7.
Microstructures bridge the molecular and the macroscopic scales. Disk-patterned microstructures obtained from microcapsules in this work are assembled through layer-by-layer which allowed depositing the natural polysaccharides chitosan (CS) and sodium alginate (SA) on porous CaCO3 microparticles. Besides CS and SA assembled outside CaCO3 microparticles, some CS and SA were also encapsulated by permeation in the pores of CaCO3. During the dissolution of CaCO3, the Ca2 + cations from decomposed CaCO3 were found to interact with alginate (AL) anions and to form Ca2 +-AL scaffolds. The adhesion arising from the OH groups in polysaccharides to solid surfaces was attributed to the disk-patterned microstructures. The calcium content (2.290 × 10− 10 mg) in each (CS/SA)4 microstructure amounts to about 1% of the total mass of the CaCO3 core. This work thus demonstrates the interaction between the decomposed core elements and the polysaccharides existing both inside and outside the porous cores. Such microstructures containing both Ca2 + and natural polysaccharides have potential applications in biological and medical systems.  相似文献   

8.
In order to greatly improve vitality of probiotic bacteria within the application, a novel biocompatible vehicle, N,O-carboxymethyl chitosan (NOCs) with appropriate degrees of substitution coat alginate (ALg) microparticles, was prepared by electrostatic droplet generation. The amount of chitosan (Cs) and N,O-carboxymethyl chitosan (NOCs) coated on the ALg microparticles was determined by differential scanning calorimetry. The surface morphology of ALg microparticles, Cs coated ALg microparticles and NOCs coated ALg microparticles was determined using scanning electron microscopy. The coating thickness of Cs coated ALg microparticles and that of NOCs coated ALg microparticles was directly observed with confocal laser scanning microscopy. In order to assess pH sensitivity of microparticles, the bovine serum albumin release from the microspheres was tested in acid solution (pH 2.0) for 2 h and subsequently in alkaline solution (pH 7.0) for 2 h. The survival of Bifidobacterium longum BIOMA 5920 loaded in NOCs coated with ALg microparticle was improved in simulated gastric juice (pH 2.0, for 2 h) compared to that of B. longum BIOMA 5920 loaded in ALg microparticles and Cs coated ALg microparticles. After incubation in simulated intestinal juices (pH 7.0, 2 h), the release of microencapsulated B. longum BIOMA 5920 was investigated.  相似文献   

9.
The intercalation of amoxicillin trihydrate (AMOX) into layered zinc hydroxide (LZH) has been achieved via ion-exchange method. The resulted nanocomposite (AMOX-LZH) has been thoroughly characterised by a number of techniques including powder X-ray diffraction (PXRD), FT-IR spectroscopy, TGA/DTG analysis and scanning electron microscopy (SEM). The PXRD results showed that the gallery height of LZH was expanded from 9.57 to 11.97 Å, indicating that the AMOX anions were successfully intercalated into the interlayer space of LZHs. The increased thermal stability of nanocomposite was confirmed by TGA/DTG analyses. Improved antibacterial activity and minimum inhibitory concentration of AMOX-LZH nanocomposite was evaluated against Gram-positive bacteria Staphylococcus aureus, Klebsiella pneumonia and Gram- negative Escherichia coli using the disk diffusion technique. The sustained release of amoxicillin drug from the AMOX-LZH nanocomposite was also verified.  相似文献   

10.
The objective of this study was to obtain detailed information on the mechanism of drug release from mixed-film of pectin-chitosan/Eudragit® RS. Pellets (710-840 μm in diameter) containing 60% theophylline and 40% microcrystalline cellulose were prepared by extrusion-spheronization method. Eudragit® L100-55 enteric coating capsules included film-coated pellets of theophylline in theoretical coating weight gains of 10, 15, and 20%, with pectin-chitosan complex contents of 5, 10, 15, and 20% for each level of weight gain were prepared and subjected to in vitro drug release. Drug release from this system showed a bimodal release profile characteristic with the drug release enhancement, being triggered (burst release) in the colonic medium. The reason for burst drug release may be due to the enzymatic degradation of pectin via pectinolytic enzymes in the simulated colonic medium. The mechanism of drug release from each formulation was evaluated in the terms of zero-order, first-order, Higuchi and Korsmeyer-Peppas models. It was observed that none of the enteric coating capsules showed any drug release in the simulated gastric medium (phase I). The analysis of release profiles showed that zero-order kinetics was found as the better fitting model for all formulations in the simulated small intestine (phase II) and it could be due to the pectin-chitosan swelling and subsequent formation of aqueous channels. In the colonic medium (phase III), due to degradation of pectin and its leaching from the mixed-film, there was a modification in drug release kinetics from swelling-controlled at phase II to anomalous at phase III. It also was found that both zero-order and Higuchi models contributed in colonic drug release from most of the formulations.  相似文献   

11.
利用基于p H值反转的落球法制备出不同质量分数的纤维素和海藻酸钠复合水凝胶球,并采用扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)对凝胶样品的形貌和化学态进行表征。结果表明海藻酸钠含量≤50%时凝胶球可以保持稳定的球形结构,内部为纤维链交叉聚集的三维网络多孔结构。复合凝胶球对亚甲基蓝、金胺O和臧红T等阳离子染料有着良好的吸附效果,含有50%海藻酸钠凝胶球对亚甲基蓝的吸附量为163.36 mg/g,吸附过程满足准二阶动力学方程,经过5次吸附脱附实验后仍然保持初始81%的吸附量。因此,该复合凝胶球可以作为一种低成本的生物吸附剂用于染料处理领域。  相似文献   

12.
壳聚糖/改性凹土复合树脂的制备及其缓释性能研究   总被引:1,自引:0,他引:1  
冯辉霞  张娟  吴洁 《功能材料》2013,44(3):388-392
以壳聚糖和改性凹土为原料,采用氢氧化钠固化,戊二醛交联的方法制备了壳聚糖/改性凹土复合树脂微球,分别采用FT-IR和TG对树脂进行结构表征。以阿司匹林为模型药物,考察了树脂的缓释性能,并对最优条件下树脂释放药物的曲线进行了动力学模型拟合。研究结果表明,CS/O-ATP树脂的吸附性能和缓释性能最佳,当戊二醛的加入量为6mL时,其载药量和包封率分别为12.2%和39.88%,且缓释效果较好。CS/O-ATP树脂的药物释放规律复合Higuchi方程,表明该树脂可以作为长效药物的缓释载体。  相似文献   

13.
The aim of this work was to relate the mechanical properties of film-coated pellets to their damage received during compaction, and to establish the significance of this damage for the release of a model drug from the resulting tablets. The formulations contained paracetamol and various excipient combinations chosen to provide different mechanical properties of the pellets, which were film-coated with Surelease® at various film thicknesses, and then compacted into tablets using three different compaction pressures. The drug release from the tablets was determined and compared to that of the uncompacted pellets. The compressibility and compactability of the various types of pellets was significantly influenced by the nature of the excipient combinations and binder liquids used to prepare the pellet cores, which also affected the drug release from the tablets. This could be attributed to the different responses of the pellets to compressive and shear stress. The film thickness and the mechanical properties of the film coating were found to be less important for tablet formation, but the film thickness played an important role in controlling the drug release rate from the tablets.  相似文献   

14.
Sustained-release polymer beads containing diclofenac sodium (DNa) dispersed in Compritol 888 and encapsulated in calcium alginate shell were prepared utilizing 23 factorial design. The effect of sodium alginate concentration, drug:Compritol 888 weight ratio and CaCl2 concentration on drug content (%), time for 50% and 80% of the drug to be released, and mean dissolution time (MDT) were evaluated with analysis of variance (ANOVA). An increase in the level of all these factors caused retardation in the release, and t50%, t80%, and MDT were increased. The drug release was dependent on the pH of the release media. A formula that gives a release comparable to commercial products was prepared.  相似文献   

15.
PLLA/PVP共混静电纺丝形貌表征及性能研究   总被引:1,自引:0,他引:1  
采用静电纺丝法制备了PLLA/PVP共混纤维膜,通过SEM、接触角表征了纤维膜的形貌以及亲水性能,同时测定了纤维膜的力学性能,探讨了共混液中PVP的比例对纤维膜形貌、亲水性能及力学性能的影响。结果表明:随着共混液中PVP比例的增大,PLLA的亲水性得到改善,但纤维的强力却迅速下降。当PVP的比例为40%和50%时,接触角接近零。SEM分析结果显示:纤维丝上孔的孔径和密度随着PVP比例的增大而发生改变。  相似文献   

16.
Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 ± 12 nm, polydispersion of 0.518, zeta potential of -22.8 ± 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat.  相似文献   

17.
Calcium phosphate cement (CPC) is a good biomaterial for bone defect repair and as a delivery system for active agents. The aim of this study was to explore the physicochemical properties and in vitro soaking and release behaviors of gentamicin-loaded CPC with and without alginate; in particular, for biocompatibility. MTT colorimetric assay and RT-PCR were used to detect U2OS cell viability and level of cyclooxygenase-2 (COX-2), respectively. As a result, the setting time increased after the addition of 0.5% alginate and 5% gentamicin, reaching 19 min—significantly higher than the 8 min taken by the CPC control, demonstrating the adverse effect of alginate and gentamicin on the setting reaction of CPC. Gentamicin might reduce the diametral tensile strength, while alginate did not affect the strength. The rate of gentamicin release from CPC can be extended by the presence of alginate. The addition of gentamicin did not show signs of impaired cell viability, but alginate enhanced the cell viability. COX-2 expression of U2OSs cultured in the alginate-containing cement extract was about one-third level of the cement extract without alginate. Alginate-containing CPC is not only useful as a reservoir for antibiotic delivery but it also helps stimulate bone regeneration.  相似文献   

18.
In order to explore the effect of nanofiller on the regulation of the drug release behavior from microsphere-embedded hydrogel prepared by carboxymethyl-hexanoyl chitosan (HNOCC) and O-hexanoyl chitosan (OHC), the release kinetics was investigated in terms of various amounts of calcium-deficient hydroxyapatite (CDHA) nanoparticles incorporated. HNOCC is a novel chitosan-based hydrophilic matrix with a burst release profile in a highly swollen state. The drug release kinetics of the HNOCC hydrogel can be regulated by incorporation of well-dispersed CDHA nanoparticles. It was found that the release duration of ibuprofen (IBU) from HNOCC was prolonged with increasing amounts of CDHA which acts as a crosslink agent and diffusion barrier. On the contrary, the release duration of the IBU from OHC (hydrophobic phase) was shortened through increasing the CDHA amount over 5%, which is due to the hydrophilic nature of the CDHA nanoparticles destroying the intermolecular hydrophobic interaction and accelerating OHC degradation. Thus, water accessibility and molecular relaxation were enhanced, resulting in a higher release rate. In addition, sustained and sequential release behavior was achieved by embedding the OHC microspheres (hydrophobic phase) into the HNOCC (hydrophilic phase) matrix, which could significantly prolong the release duration of the HNOCC drug-loaded implant.  相似文献   

19.
Based on dissolution profiles of three model drugs on spray layered beads with the same percentage of Aquacoat coating, it was concluded that in vitro dissolution of oral controlled-release formulations should be performed in both gastric and intestinal media for ionizable drugs. Ketoprofen (weak acid, pKa 4.8), nicardipine HCl (salt of weak organic base, pKa 8.6), and acetaminophen (very weak organic acid, pKa 9.7, not ionized at physiologic pH) provided different dissolution characteristics in enzyme-free simulated gastric fluid (pH 1.4) and enzyme-free simulated intestinal fluid (pH 7.4), indicating that the rate of drug release was pH dependent and related to drug ionization even though the solubility of the coating (ethylcellulose) is pH independent. In acidic media, ketoprofen release from the beads containing low-level coating (3%) was slower than that of nicardipine HCl, with the opposite holding true in basic media. Acetaminophen was released at approximately the same rate in both acidic and basic media. A comparison of drug release profiles for nicardipine HCl nude beads was also investigated among three different dissolution methods: USP dissolution apparatus I (basket method, 50 rpm), USP dissolution apparatus II (paddle method, 50 rpm), and USP dissolution apparatus III (Bio-Dis, Van-Kel Industries, 5 and 10 dpm). Release profiles obtained from all methods were similar, indicating that the three dissolution methods were comparable.  相似文献   

20.
Preparation and characterization of a low-cost, novel steam-activated bamboo charcoal (BC) and poly(methacrylate) (PMAA) bound with chitosan (CTS) to form chitosan/bamboo charcoal/poly(methacrylate) (CTS/BC/PMAA) composite beads is reported for the first time in this paper. The characteristics are revealed by techniques such as X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Brunauer Emmett Teller (BET), solution pH and pH at point of zero charge \((\hbox {pH}_{\mathrm {pzc}})\). The composite beads possessed a dominant acidic surface group of 0.663 mmol \(\hbox {g}^{\mathrm {-1}}\), as revealed by Boehm titration method. This acidity was confirmed by its solution pH of 6.46; \(\hbox {pH}_{\mathrm {pzc}}\) of 6.70 and increase in oxygen surface via XPS analysis. \(\hbox {N}_{\mathrm {2}}\) adsorption–desorption isotherms at 77 K of the beads revealed high BET surface area (SA) of 681.15 \(\hbox {m}^{\mathrm {2}}\hbox {g}^{\mathrm {-1}}\). Langmuir model affords a SA of 773.34 \(\hbox {m}^{\mathrm {2}}\hbox {g}^{\mathrm {-1}}\). SEM showed the microporous nature of the composite beads. The properties of CTS/BC/PMAA composite beads were compared to CTS/BC and neat BC. Thermal stability and successful coating of 5.1 wt% of PMAA and 6.8 wt% of CTS to CTS/BC/PMAA beads were shown by DSC and TGA analyses. The composite beads showed low carbon particle released at pH 7.4 and 6.8. Furthermore, dynamic adsorption revealed that CTS/BC/PMAA composite beads can be used to capture a polar substance, such as creatinine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号