首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymethylmethacrylate (PMMA)-based bone cement is used for the fixation of artificial joints in orthopaedics. However, the fixation is liable to loosen in the body, because the cement does not bond to living bone. So-called bioactive ceramics bond directly to living bone through the apatite layer formed on their surfaces in the body. We previously revealed that modification using γ-methacryloxypropyltrimethoxysilane (MPS) and water-soluble calcium salts such as calcium acetate and calcium hydroxide was effective for providing the PMMA-based bone cement with apatite-forming ability in a simulated body fluid (SBF, Kokubo solution) that closely reproduces the body environment. However, the effect of the chemical reaction forming the apatite on the mechanical properties of the cements has not been clarified. The present work aimed to investigate this issue from the viewpoint of the interface structure between the apatite and the cement. The surface of the cement modified with calcium acetate and MPS was fully covered with newly formed apatite after soaking in Kokubo solution within 7 days, while half of the surface area of the cement modified with calcium hydroxide and MPS was covered with the apatite. The bending strength of the modified cements decreased after soaking in Kokubo solution. Porous structure was observed in the region about 50–100 μm in depth from the top surface because of release of the Ca2+ ions by both modified cements after soaking in Kokubo solution. The decrease in bending strength of the modified cements could be attributed to the formation of the pores. In addition, the pores on the top surfaces of the cements were filled with the newly formed apatite. The apatite formation would be effective not only for bioactivity but also for decreasing the reduction of mechanical strength.  相似文献   

2.
A rectangular specimen of polyethylene terephthalate (PET) was soaked in a titania solution composed of titanium isopropoxide, water, ethanol and nitric acid at 25 °C for 1 h. An amorphous titanium oxide was formed uniformly on the surface of PET specimen, but did not form an apatite on its surface in a simulated body fluid (SBF) within 3 d. The PET plate formed with the amorphous titanium oxide was subsequently soaked in water or HCl solutions with different concentrations at 80 °C for different periods of time. The titanium oxide on PET was transformed into nano-sized anatase by the water treatment and into nano-sized brookite by 0.10 M HCl treatment at 80 °C for 8 d. The former did not form the apatite on its surface in SBF within 3 d, whereas the latter formed the apatite uniformly on its surface. Adhesive strength of the titanium oxide and apatite layers to PET plate was increased by pre-treatment of PET with 2 wt% NaOH solution at 40 °C for 2 h. A two-dimensional fabric of PET fibers 24 μm in diameter was subjected to the NaOH pre-treatment at 40 °C, titania solution treatment at 25 °C and subsequent 0.10 M HCl treatment at 80 °C. Thus treated PET fabric formed the apatite uniformly on surfaces of individual fibers constituting the fabric in SBF within 3 d. Two or three dimensional PET fabrics modified with the nano-sized brookite on surfaces of the individual fibers constituting the fabric by the present method are believed to be useful as flexible bone substitutes, since they could be integrated with living bone through the apatite formed on their constituent fibers.  相似文献   

3.
Titanium (Ti) metal was soaked in HCl solution after NaOH treatment and then subjected to heat treatments at different temperatures. Their apatite-forming abilities in a simulated body fluid (SBF) were discussed in terms of their surface structures and properties. The nanometer scale roughness formed on Ti metal after NaOH treatment remained after the HCl treatment and a subsequent heat treatment below 700°C. Hydrogen titanate was formed on Ti metal from an HCl treatment after NaOH treatment, and this was converted into titanium oxide of anatase and rutile phases by a subsequent heat treatment above 500°C. The scratch resistance of the surface layer increased with the formation of the titanium oxide after a heat treatment up to 700°C, and then decreased with increasing temperature. The Ti metal with a titanium oxide layer formed on its surface showed a high apatite-forming ability in SBF when the heat treatment temperature was in the range 500–700°C. The high apatite-forming ability was attributed to the positive surface charge in an SBF. These positive surface charges were ascribed to the presence of chloride ions, which were adsorbed on the surfaces and dissociated in the SBF to give an acid environment.  相似文献   

4.
Chemical surface treatment of silicone for inducing its bioactivity   总被引:3,自引:0,他引:3  
It has been confirmed that the apatite nucleation is induced by silanol (Si–OH) groups formed on the surfaces of materials and/or silicate ions adsorbed on them.It was previously shown that apatite nuclei are formed on organic polymers when the polymers are placed on CaO, SiO2-based glass particles soaked in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, and that they grow spontaneously to form a dense and uniform apatite layer together with high adhesive strength to the substrates when the polymers are soaked in another solution with ion concentrations 1.5 times the SBF. In the present study, silanol groups bonded covalently to the surface of the silicone substrate were formed and its apatite-forming ability was examined. When silicone substrates were treated with 5 or 10 M NaOH with pH 7.25 at 36.5°C for more than 3 h, silanol groups were formed on the surfaces of the substrates. When thus NaOH-treated substrates were soaked in 1.5SBF at 36.5°C, a bone-like apatite was formed on the substrates in a short period. © 1998 Chapman & Hall.  相似文献   

5.
Titanium (Ti) metal was treated with water or HCl solutions after 5 M NaOH solution treatment and then subjected to heat treatment at 600°C. The apatite-forming abilities of the treated Ti metals were examined in simulated body fluid. The apatite-forming ability of the Ti metal subjected to NaOH, water and heat treatment was lower than that of just NaOH and heat treatments. Ti metals subjected to NaOH, HCl and heat treatment showed apatite-forming abilities, which increased with increasing HCl concentrations up to the same level as that of NaOH- and heat-treated Ti metal. The former did not show a decrease in its apatite-forming ability, even in a humid environment for a long period, whereas the latter decreased its ability. The increase in the apatite-forming ability with increasing HCl concentrations suggests a different mechanism of apatite formation from that previously proposed.  相似文献   

6.
Modification of organic polymer with silanol groups in combination with calcium salts enables the polymer to show bioactivity, that is, the polymer forms apatite on its surface after exposure to body environment. However, how modification with silanol groups influences ability of apatite formation on the polymer substrate and adhesive strength between polymer and apatite is not yet known. In the present study, polyamide containing carboxyl groups was modified with different amounts of silanol groups, and its apatite-forming ability in 1.5SBF, which contained ion concentrations 1.5 times those of simulated body fluid (SBF), was examined. The rate of apatite formation increased with increasing content of silanol groups in the polyamide films. This may be attributed to enhancement of dipole interactions. A tendency for the adhesive strength of the apatite layer on the polyamide film to be decreased with increasing content of silanol groups was observed. This may be attributed to swelling in 1.5SBF and having a high degree of shrinkage after drying. These findings clearly show that modification of organic polymers with the functional groups induces apatite deposition, and also determines the adhesive strength of the apatite layer to the organic substrates.  相似文献   

7.
Strontium (Sr) enhances bone formation both in vitro and in vivo, while it reduces bone resorption. Thus, Sr incorporation in bioactive glass–ceramic scaffolds for bone tissue regeneration could further enhance osteogenesis. The aim of this work was the synthesis, characterization and investigation of the apatite-forming ability in inorganic environment of two sol–gel-derived bioactive Sr-containing glass–ceramic materials with 5 and 10% of SrO. The thermal properties of the synthesized materials were studied using differential thermal analysis (TG–DTA). The apatite-forming ability test was conducted in SBF for various immersion times for both thermally treated and untreated samples. The characterization of the samples before and after immersion in SBF was performed with Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy with associated energy-dispersive spectroscopy. FTIR spectra revealed that all synthesized glass–ceramic materials presented the characteristic bands of silicate glasses, while XRD identified various crystalline phases, mostly calcium silicates. Strontium is present in the form of strontium silicate in both as-received and thermally treated specimens, and Sr-diopside in the thermally treated specimens. The apatite-forming ability of the glass–ceramic materials was confirmed by the formation of a hydroxyapatite layer after 3 and 5 days of immersion in SBF on the surface of the untreated and thermally treated samples, respectively. The apatite layer, also, became thicker as the immersion time increased.  相似文献   

8.
Nanometer-scale roughness was generated on the surface of titanium (Ti) metal by NaOH treatment and remained after subsequent acid treatment with HCl, HNO3 or H2SO4 solution, as long as the acid concentration was not high. It also remained after heat treatment. Sodium hydrogen titanate produced by NaOH treatment was transformed into hydrogen titanate after subsequent acid treatment as long as the acid concentration was not high. The hydrogen titanate was then transformed into titanium oxide (TiO2) of anatase and rutile by heat treatment. Treated Ti metals exhibited high apatite-forming abilities in a simulated body fluid especially when the acid concentration was greater than 10 mM, irrespective of the type of acid solutions used. This high apatite-forming ability was maintained in humid environments for long periods. The high apatite-forming ability was attributed to the positive surface charge that formed on the TiO2 layer and not to the surface roughness or a specific crystalline phase. This positively charged TiO2 induced apatite formation by first selectively adsorbing negatively charged phosphate ions followed by positively charged calcium ions. Apatite formation is expected on the surfaces of such treated Ti metals after short periods, even in living systems. The bonding of metal to living bone is also expected to take place through this apatite layer.  相似文献   

9.
生物活性钛涂层   总被引:9,自引:0,他引:9  
真空等离子喷涂的钛涂层经 5.0mol/L NaOH溶液处理后,将其浸泡在含 Ca2+、HPO2-的模拟生理体液(FCS和SBF)中,考察涂层诱导羟基磷灰石生长过程,并评价其生物活性.用SEM观察碱处理前后和在模拟生理体液中浸泡后钛涂层的形貌,用AES分析了碱处理前后钛涂层的表面成分;用XRD、FT-IR和EDS表征浸泡后涂层表面生长物的结构和成分;并测量了处理后钛涂层在浸泡过程中溶液中离子浓度和pH值的变化.结果表明,经处理的钛涂层在模拟生理体液中能诱导羟基磷灰石在其表面生长;在SBF和FCS分别形成碳酸羟基磷灰石层和含氧磷灰石的羟基磷灰石层.钛涂层的活性是由于碱处理后表面形成了网状和纤维状结构的Na-Ti-O化合物.这种化合物在模拟生理溶液中释放Na,吸收H;形成水化钛酸盐,诱导羟基磷灰石成核生长.  相似文献   

10.
海藻酸钙/纳米氢氧化铝纤维的制备与性能研究   总被引:2,自引:0,他引:2  
用湿法纺丝工艺制备出海藻酸钙纤维和纳米氢氧化铝/海藻酸钙复合纤维.用场发射扫描电镜和红外光谱仪表征了两种纤维的表观形态和微观机制,用热重分析仪测试了两种纤维的热稳定性能.研究表明,纳米氢氧化铝已较好地分散到纤维中,且纳米氢氧化铝与海藻酸钙分子之间产生了新的键合作用.TG和DTG测试结果表明,复合纤维的热稳定性要优于海藻...  相似文献   

11.
Biomimetic growth of calcium phosphate compound on cotton sheets treated with tetraethoxy silane and soaked in simulated body fluid solution was studied using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), micro-Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). Micro-FTIR and EDAX results show that silicon was coupled to the cotton fiber when cotton was treated with tetra-ethoxy silane (TEOS) at 125°C for 1 h. Calcium phosphate nucleation started to occur on the surface of TEOS-treated cotton fibers upon immersion in 1.5×SBF (simulated body fluid solution) within 3 days and after 20 days, all the fiber surfaces were found covered with a thick and porous coating of calcium phosphate. The Ca and P determined by inductively coupled plasma spectroscopy (ICP) analysis revealed that the Ca/P ratio as well as the amount of calcium phosphate coating depends on the soaking time in SBF solution. © 1999 Kluwer Academic Publishers  相似文献   

12.
A simulated body fluid (SBF) with ion concentrations similar to body fluid, proposed by Kokubo et al., is widely used to evaluate bone-bonding potential through the formation of an apatite layer. To be confident of the evaluation of the potential for the apatite formation in SBF, standard substrates are required. Although Na2O–CaO–SiO2 glasses have been focused upon as candidate standard substrates, it has not been clarified whether the preparation conditions of the glasses affect their apatite formation potential in SBF. In this study, Na2O–CaO–SiO2 glasses were prepared by a conventional melting–quenching method with different melting periods and annealing processes to examine their properties, including apatite formation in SBF. The Na2O–CaO–SiO2 glasses show reproducible apatite-forming ability when prepared using moderate melting and annealing processes, and can be useful substrates to test the reproducibility of SBF.  相似文献   

13.
It has long been known that titanium (Ti) metal bonds to living bone through an apatite layer formed on its surface in the living body after it had previously been subjected to NaOH and heat treatments and as a result had formed sodium titanate on its surface. These treatments were applied to a porous Ti metal layer on a total hip joint and the resultant joint has been in clinical use since 2007. It has been also demonstrated that the apatite formation on the treated Ti metal in the living body also occurred in an acelullar simulated body fluid (SBF) with ion concentrations nearly equal to those of the human blood plasma, and hence bone-bonding ability of the treated Ti metal can be evaluated using SBF in vitro. However, it was recently found that certain Ti metals subjected to the same NaOH and heat treatments display apatite formation in SBF which is decreased with the increasing volume of the NaOH solution used in some cases. This indicates that bone-bonding ability of the treated Ti metal varies with the volume of the NaOH solution used. In the present study, this phenomenon was systematically investigated using commercial NaOH reagents and is considered in terms of the structure and composition of the surface layers of the treated Ti metals. It was found that a larger amount of the calcium contamination in the NaOH reagent is concentrated on the surface of the Ti metal during the NaOH treatment with an increasing volume of the NaOH solution, and that this inhibited apatite formation on the Ti metal in SBF by suppressing Na ion release from the sodium titanate into the surrounding fluid. Even a Ca contamination level of 0.0005 % of the NaOH reagent was sufficient to inhibit apatite formation. On the other hand, another NaOH reagent with a nominal purity of just 97 % did not exhibit any such inhibition, since it contained almost no Ca contamination. This indicates that NaOH reagent must be carefully selected for obtaining reliable bone-bonding implants of Ti metal by the NaOH and heat treatments.  相似文献   

14.
Hydroxyl (OH)-free TiO2 thin films with amorphous and crystalline phases were deposited onto (100) silicon substrates using filtered cathodic vacuum arc deposition in order to investigate the in vitro apatite formation in simulated body fluid (SBF). The surface morphology, composition and structure of the TiO2 thin films were characterized. The X-ray photoelectron spectroscopy results confirmed the presence of calcium and phosphorus on all TiO2 thin film surfaces after immersion in SBF at 37 °C. Fourier transform infra red results showed the presence of carbonated apatite on the surface of these films. Amorphous structured TiO2 thin film showed poor ability to form apatite on its surface in SBF. Apatite formation was more pronounced on the surfaces of the anatase films in comparison to those of rutile. The carbonated apatite deposition rate increased significantly when the TiO2 film was illuminated with UV light prior to immersing in the SBF. In particular, the UV-treated anatase and rutile films showed increased rates of carbonated apatite formation on their surfaces in comparison to samples not treated with radiation. The increase in hydrophilicity due to UV treatment appears beneficial for the apatite growth on these surfaces.  相似文献   

15.
Natural bone has features such as high fracture toughness and bone-bonding bioactivity, and is organic–inorganic hybrid composed of collagen and apatite crystals. Therefore, apatite-polymer hybrids designed to mimic the structure of bone represent candidates for high-performance bone substitutes. In this study, we prepared pectin hydrogels through covalent cross-linking using divinylsulfone (DVS) and investigated their apatite-forming abilities of the gels in simulated body fluid (SBF) and mechanical properties by tensile test. The obtained results were interpreted in terms of surface charge of the gels and chemical reaction with SBF. The apple- and citrus-derived gels formed the apatite on their surfaces in SBF within 3 days. These gels showed tensile strength around 30 MPa.  相似文献   

16.
Titanium alloy (Ti6A14V) substrates, having the ability of biomimetic calcium phosphate-based materials, especially hydroxyapatite deposition in a simulated body fluid (SBF) means of chemical treatment (alkaline treatment) and subsequent heat treatment, was studied. The effects of alkaline treatment time, concentration and heat treatment temperature on the formation of calcium phosphate (carbonate-hydroxyapatite) on Ti6A14V surface were examined. For this purpose, the metallic substrates were treated in 0, 5 and 10 M NaOH solutions at a temperature of 60 or 80°C for 1 and 3 days. Subsequently the substrate was heat-treated at 500, 600 and 700°C for 1 h for consolidation of the sodium titanate hydrogel layer. Finally, they were soaked in SBF for 1 and 3 days. The substrate surfaces were characterized by the techniques commonly used for bulk material such as scanning electron microscopy (SEM) and thin film X-ray diffraction (TF-XRD). With regard to the SEM and TF-XRD results, the optimum process consists of 3 days soaking in 5 M NaOH in 80°C and subsequent heat treatment at 600°C for 1h. It is worth mentioning that the results showed that the apatite formed within 3 days on the specimen surfaces, however, there was no sign of apatite formation in the control samples (without alkaline and heat treatment) which was treated for up to 3 days immersion in SBF.  相似文献   

17.
Basalt and glass fibers were treated with sodium hydroxide and hydrochloric acid solutions respectively for different periods of time. Both the mass loss ratio and the strength maintenance ratio of the fibers were examined after the treatment. The morphologies of the fiber surfaces were characterized using scanning electron microscopy and their compositions were analyzed using energy dispersive X-ray spectroscopy. For the basalt fibers, the acid resistance was much better than the alkali resistance. Nevertheless, for the glass fibers, the acid resistance was nearly the same as the alkali resistance. Based on the experimental results, possible corrosion mechanisms are addressed.  相似文献   

18.
Covalent coupling of sulfonic group (–SO3H) was attempted on different polymers to evaluate efficacy of this functional group in inducing nucleation of apatite in body environment, and thereupon to design a simple biomimetic process for preparing bonelike apatite-polymer composites. Substrates of polyethylene terephthalate (PET), polycaprolactam (Nylon 6), high molecular weight polyethylene (HMWPE) and ethylene-vinyl alcohol co-polymer (EVOH) were subjected to sulfonation by being soaked in sulfuric acid (H2SO4) or chlorosulfonic acid (ClSO3H) with different concentrations. In order to incorporate calcium ions, the sulfonated substrates were soaked in saturated solution of calcium hydroxide (Ca(OH)2). The treated substrates were soaked in a simulated body fluid (SBF). Fourier transformed infrared spectroscopy, thin-film X-ray diffraction, and scanning electron microscopy showed that the sulfonation and subsequent Ca(OH)2 treatments allowed formation of –SO3H groups binding Ca2+ ions on the surface of HMWPE and EVOH, but not on PET and Nylon 6. The HMWPE and EVOH could thus form bonelike apatite layer on their surfaces in SBF within 7 d. These results indicate that the –SO3H groups are effective for inducing apatite nucleation, and thereby that surface sulfonation of polymers are effective pre-treatment method for preparing biomimetic apatite on their surfaces.  相似文献   

19.
Electrophoretic deposition (EPD), which is normally available on electric conductive materials, was applied to insulating materials. Wollastonite particles were deposited into the pores of porous alumina and porous ultrahigh molecular weight polyethylene (UHMWPE) substrates by EPD to yield alumina-wollastonite and UHMWPE-wollastonite composites, respectively. These composites were soaked in simulated body fluid (SBF) to evaluate their apatite-forming ability. Apatite was induced from the wollastonite particles, which grew on the surfaces and covered the entire composite surfaces. The bonding strength of the apatite layer to the substrates was as high as 8.9 MPa for alumina and 5.2 MPa for UHMWPE due to an interlocking effect. Thus, the formed alumina-wollastonite and UHMWPE-wollastonite composites should be useful as bone substitutes.  相似文献   

20.
The effect of in vitro induction of calcium phosphate on bamboo surfaces is reported for the first time. Bamboo is studied for biomaterial application due to its elasticity modulus being closer to human bone than other biomaterials. Following an earlier study of cytotoxicity and precipitation of apatite on ground tissue and vascular bundles of bamboo, the composition and function of the minerals in bamboo, especially silica, are considered in the present work. It is found that in both outer and inner surfaces of bamboo culm, there exists some silica. Bamboo elicits an inert response when soaked directly in calcification solution. After the rind of bamboo is treated with sodium hydroxide solution, the silica underneath can induce precipitation of calcium phosphate in an ambient environment. Furthermore, by subsequent grafting with polyethylene glycol (PEG 1000), calcium phosphate induction of bamboo rind can be improved, depending on the concentration of NaOH solution and treatment time. Heat treatment of bamboo can remove the organic materials around the minerals in bamboo, allowing the calcification behaviour of the silica-containing inorganic phase of bamboo in aqueous solution to be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号