首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article describes in detail the wear behavior of zircon sand-reinforced LM13 alloy composite at elevated temperatures with variation in load. Zircon sand particles in different amounts were reinforced into LM13 alloy by stir casting route. Dispersion of reinforced particle was examined under optical and scanning electron microscope. The hardness values of the composites were observed to increase with the increasing amount of reinforcement. The coefficients of thermal expansion of LM13 alloy and zircon sand-reinforced composites were recorded in different temperature ranges. Wear behaviors of base alloy and composites have been studied with variation in applied load. Effect of temperature (from 50 to 300 °C) on wear behaviors of both alloy and composites were determined at low (1 kg) and high (5 kg) loads. The improvement in the wear resistance was noticed with the higher amount of reinforcement. A transition from mild-to-severe wear with variations in temperature and load was observed. The results are discussed in light of operative wear mechanisms. Wear track and wear debris of composite materials were also analyzed under SEM to understand the operative wear mechanism under different conditions.  相似文献   

2.
The present work describes the tribological study of the aluminum metal matrix composite manufactured by the spray atomization and deposition technique. The immiscible element Sn is added in the Al-Si alloy in different proportion to see its effect on wear behavior. The economical mineral zircon sand (8 vol.%) of size range 63-90 μm has been used as ceramic reinforcement. The microstructural features showed that Sn and reinforced particles were homogeneously dispersed in the matrix phase. The wear experiments were conducted at high temperature on pin-on-disk wear testing machine. The wear debris and worn surfaces are analyzed with the help of scanning electron microscope equipped with energy-dispersive spectroscopy facility. The Al-Si-10Sn/ZrSiO4 composite offers higher wear resistance as compared to base alloy and other composites irrespective of the high temperature conditions of wear tests.  相似文献   

3.
The friction and wear properties of 30CrMnSiA steel were investigated at elevated temperature from 100 to 600 °C. Thereafter, the wear debris and worn surfaces were examined to understand the wear mechanisms. The remained debris with relatively high hardness created three-body abrasion at lower temperatures (100-300 °C). Abrasive wear prevailed at the conditions with high friction coefficients and wear rates. A significant change in friction and wear behavior occurred at 400 °C. At the temperature of 400 °C, oxidation induced mild wear was found because of the formation of load-bearing oxide film. Both the friction coefficients and wear rates of the steel were lowest at 400 °C. At the temperatures of 500-600 °C, a mild-to-severe wear transition occurred which resulted in an increase in the friction coefficients and wear rates of the steel. This is related to the decrease in the strength of matrix and hardness of worn surfaces and subsurfaces. The predominant wear mechanism is considered to be severe abrasive, adhesive wear and a fatigue delamination of the oxide film.  相似文献   

4.
The graphite particles and Al_2O_3 short fibers reinforced AZ91D-0.8%Ce composites were fabricated by squeeze-infiltration technique.The researches about the effects of different graphite particle sizes on the microstructure and wear property of the composites were performed under the condition of constant contents of graphite particles and Al_2O_3 short fibers.The results reveal that the grain size of the composites changes less when the graphite particle size descends.Moreover,Ce enriches around the gr...  相似文献   

5.
Carbon nanotubes (CNT) are synthesized using arc discharge method in an open air. Various amounts of carbon nanotubes-reinforced AA7075 composites are prepared by powder metallurgy route and then hot extrusion at 450 °C. Hot-extruded composites are characterized, and mechanical properties are measured. Dry sliding wear properties of hot-extruded samples were evaluated using a pin-on-disk method for various loads (5-20 N) at room temperature and for various temperatures (100-400 °C) at the applied load 10 N as a function of CNT amount. Grain size of the composites is decreased compared with Al alloy matrix. Transmission electron microscopy of the composites revealed that the CNT are uniformly distributed in the composites. Mechanical properties of the hot-extruded composites are enhanced with an increase in CNT content. The wear performance is improved with an increased CNT amount, but decreases with an increase in the applied load and temperature as well. The wear damage is mild at lower applied loads and temperatures, whereas the damage is severe at 400 °C. The wear mechanism was plowing in the initial stages which is transformed to severe sliding and chipping with increasing load and temperature. The enhanced wear behavior of composites is attributed to self-lubricating nature of carbon nanotubes.  相似文献   

6.
This study examined the effects of heat treatment on the microstructure and wear properties of Al–Zn–Mg–Cu/in-situ Al–9Si–SiCp/pure Al composites. Pure Al powder was used to increase densification but it resulted in heterogeneous precipitation as well as differences in hardness among the grains. Heat treatment was conducted to solve this problem. The heat treatment process consisted of three stages: solution treatment, quenching, and aging treatment. After the solution treatment, the main dissolved phases were η′(Mg4Zn7), η(MgZn2), and Al2Cu phase. An aging treatment was conducted over the temperature range, 100–240 °C, for various times. The GP zone and η′(Mg4Zn7) phase precipitated at a low aging temperature of 100–160 °C, whereas the η(MgZn2) phase precipitated at a high aging temperature of 200–240 °C. The hardness of the sample aged at 100–160 °C was higher than that aged at 200–240 °C. The wear test was conducted under various linear speeds with a load of 100 N. The aged composite showed a lower wear rate than that of the as-sintered composite under all conditions. As the linear speed was increased to 1.0 m/s, the predominant wear behavior changed from abrasive to adhesive wear in all composites.  相似文献   

7.
An investigation was carried out to examine the influence of structural and mechanical properties on wear behavior of austempered ductile iron (ADI). Ductile iron (DI) samples were austenitized at 900 °C for 60 min and subsequently austempered for 60 min at three temperatures: 270, 330, and 380 °C. Microstructures of the as-cast DI and ADIs were characterized using optical and scanning microscopy, respectively. The structural parameters, volume fraction of austenite, carbon content of austenite, and ferrite particle size were determined using x-ray diffraction technique. Mechanical properties including Vicker’s hardness, 0.2% proof strength, ultimate tensile strength, ductility, and strain hardening coefficient were determined. Wear tests were carried out under dry sliding conditions using pin-on-disk machine with a linear speed of 2.4 m/s. Normal load and sliding distance were 45 N and 1.7 × 104 m, respectively. ADI developed at higher austempering temperature has large amounts of austenite, which contribute toward improvement in the wear resistance through stress-induced martensitic transformation, and strain hardening of austenite. Wear rate was found to depend on 0.2% proof strength, ductility, austenite content, and its carbon content. Study of worn surfaces and nature of wear debris revealed that the fine ausferrite structure in ADIs undergoes oxidational wear, but the coarse ausferrite structure undergoes adhesion, delamination, and mild abrasion too.  相似文献   

8.
AZ31-Mg2Si in situ composites were prepared from AZ31 Mg alloy and Si particles by a gravity casting method. Several parameters, such as Si content, normal load, and environmental temperature, were varied in order to study their effects on the composite dry sliding wear properties. Tensile properties and hardness of the composites were also investigated. The obtained results showed that the wear resistance, yield strength, and hardness of the AZ31-Mg2Si composites increased with size and quantity of the Mg2Si phase. However, when the environmental temperature increased from 25 to 190 °C, the composite wear resistance and ultimate tensile strength gradually decreased due to softening of the AZ31 matrix.  相似文献   

9.
以铸造碳化钨(WC/W2C P)为增强颗粒,利用真空熔烧工艺制备了一种结构增韧的金属基复合材料。利用SEM,EDS,显微硬度测试和图像分析等手段研究了WC/W2C P表面改性前、后复合材料中颗粒增强区域(WC/W2C P-Ni Cr BSi)的微观组织结构和性能;利用环-盘式磨损试验机研究了WC/W2C P表面改性对复合材料在室温和600℃时的磨料磨损性能的影响。结果表明,经表面改性后WC/W2C P在Ni Cr BSi基体中的分解得到了有效抑制,颗粒内部WC/W2C共晶组织的含量与未改性的颗粒相比提高了1.6倍。以表面改性的WC/W2C P为增强颗粒能显著降低复合材料在室温和高温时的磨损率。在600℃时磨损表面形成了层状结构的保护膜,致使复合材料的磨损率低于室温时的磨损率。  相似文献   

10.
The dry friction and wear behavior of 7075 Al alloy reinforced with SiC 3D continuous ceramic network against Cr12 steel was studied with oscillating dry friction and wear tester under the testing conditions of 70 °C, 30 min, and the load range of 40–100 N. The experimental result shows that the characteristic of abrasive wear and oxidation wear mechanisms are present for 3D continuous SiC/7075 Al composite. 3D continuous network ceramic as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. Under low load, the composite with low volume fraction of ceramic reinforcement exhibits better wear resistance due to the homogeneous reinforcement distribution with small pore size; on the contrary, under high load, the composite with high reinforcement volume fraction exhibits better wear resistance because of the coarse frame size. Hard SiC frame leads to the wear of Cr12 steel mainly. The frame with high volume fraction corresponds to the high Fe content.  相似文献   

11.
In this study, the effect of heat treatment and yttrium additions on the microstructure, mechanical properties, and tribological behavior of Al-15% Mg2Si cast composites was investigated. The microstructural study revealed the presence of both primary and secondary Mg2Si phases in all composite specimens and also Y-containing intermetallics (Al2Y phases) at higher concentrations. It was also found that Y addition does not change the size and morphology of primary Mg2Si particles considerably, but the pseudo-eutectic Mg2Si changed from a flake-like morphology to fine fibrous or rod-like one. The results show that proper content of Y additions can reduce the amount of Mg2Si phase through dissolving it into the matrix, lead to the precipitation of Al2Y phase and improve the mechanical properties. Modified composites with 0.5% Y exhibited an ultimate tensile strength (UTS) of 290 MPa with an elongation of 4.3%. After exposing the composite to solution treatment at 520 °C for 4 h, the tensile strength of the composite continuously increased with the increase of Y content, and reached the maximum at 1% Y. The maximum UTS and elongation at room temperature for the heat-treated composites are 294 MPa and 7.4%, respectively. In the cast specimen, fracture surfaces are covered by packets with coarse steps, suggesting a brittle mode of failure. Modified composites with 0.5 wt.% Y contain several cracked particles together with a few decohered primary Mg2Si particles. In solution heat-treated state, dimples present at the fracture surface are rather coarse but homogenous, showing a semi-ductile mode of fracture. Wear test results showed that the wear resistance of all specimens increases with the addition of Y up to 0.3 wt.%. Scanning electron microscopic observations of the worn surfaces revealed that the dominant wear mechanism was abrasive wear accompanied by some delamination wear mode.  相似文献   

12.
The AA6061−10wt.%B4C mono composite, AA6061−10wt.%B4C−Gr (Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061−10wt.%B4C−MoS2 hybrid composites containing 2.5, 5, and 7.5 wt.% MoS2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and MoS2-reinforced hybrid composites decreased in the temperature range of 30−100 °C due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy (SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 °C, respectively. At 150 °C, transmission electron microscopy (TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.  相似文献   

13.
Graphite and Al2O3 short fibers reinforced Mg-Al-Zn alloy hybrid composites were fabricated by perform squeeze-infiltration route. The effects of the volume of graphite particles on the microstructure, mechanical properties and tr/bological behavior were investigated under the conditions of constant size of graphite particle and volume of Al2O3 short fiber. The results reveal that the uniform distribution of the reinforced graphite particles and Al2O3 short fiber can be obtained by this technique, and they have strong bonding with the metal matrix. Increasing graphite volume results in decrease in hardness, the ultimate tensile strength whereas the Al2O3 short fiber makes contribution to the increase in hardness of the composite. The composite exhibits good wear resistance, small wear mass loss and low coefficient of friction as compared with the metal matrix. The wear mechanisms transit from oxidation wear, abrasion wear into delamination wear as the applied load is increased, and a film of lubricant covering almost entire surface of specimen, is found to be formed, which separates the wear surfaces from metal to metal contact and thus improves the tribological properties.  相似文献   

14.
用搅拌铸造法制备不同质量分数二硼化钛(TiB2)颗粒增强的铝基复合材料,并研究其摩擦磨损性能.采用销?盘式摩擦试验机对Al2024?TiB2复合材料进行干滑动磨损试验.为了研究摩擦学参数对复合材料的影响,对载荷、滑动距离和滑动速度等参数进行调整.显微组织表征结果表明,TiB2颗粒分散均匀并与基体有良好的结合.实验结果表...  相似文献   

15.
In order to obtain a homogeneous distribution of fine Si particles in aluminium matrix and thus to improve the adaptability of Al-Si alloy for aerospace and automobile applications, Si particulate reinforced aluminium matrix composites have been processed by using powder metallurgy method. The Si pariticulates with 20–40 μm size and Al alloy powders were mixed, degassed and extruded at 350°C or 400°C depending on the composition of the matrix alloy. The microstructural characteristics of the composites such as interfacial stability at high temperatures have been investigated by various experimental techniques. Wear properties of the composites were investigated by using a pin-on-disk type wear tester. The results were compared with these obtained from the conventionally cast hypereutectic Al-Si alloys and discussed in terms of the observed microstructural characteristics and physical properties such as hardness and tensile properties.  相似文献   

16.
The structural evolution of a silicon oxynitride fiber reinforced boron nitride matrix (Si-N-Of/BN) wave-transparent composite at high temperatures was investigated. When heat treated at 1600 °C, the composite retained a favorable bending strength of 55.3 MPa while partially crystallizing to Si2N2O and h-BN from the as-received amorphous structure. The Si-N-O fibers still performed as effective reinforcements despite the presence of small pores due to fiber decomposition. Upon heat treatment at 1800 °C, the Si-N-O fibers already lost their reinforcing function and rough hollow microstructure formed within the fibers because of the accelerated decomposition. Further heating to 2000 °C led to the complete decomposition of the reinforcing fibers and only h-BN particles survived. The crystallization and decomposition behaviors of the composite at high temperatures are discussed.  相似文献   

17.
In this research, the sliding wear behavior of the hot pressed WC/40 vol%(FeAl-B) composites was investigated at temperatures ranging from the ambient one to those as high as 600 °C. The composites were then compared with hot pressed WC-40 vol%Co and commercial WC-16 vol%Co (H10F) in terms of their mechanical properties and high temperature wear behavior. It was found that the WC/(FeAl-B) composite recorded its maximum wear resistance at all the experimental temperatures, which was higher than that of WC-40 vol%Co at these same temperatures due to the higher hardness of the FeAl-B than that of the Co matrix. Also, WC/(FeAl-B) exhibited a higher wear resistance at lower temperatures and a more proper behavior at higher temperatures than did the commercial WC-16 vol%Co; this was attributed to the higher strength of the FeAl-B matrix at high temperatures. Examination of the wear surfaces revealed that abrasion was the wear mechanism in the commercial WC-16 vol%Co and WC/(FeAl-B) composites at both ambient temperature and 300 °C. At 400 °C, however, the wear mechanism was more of an adhesive one, while binder oxidation was observed at 600 °C.  相似文献   

18.
TiB2 particle-reinforced 7075 Al alloy was synthesized to investigate the effect of TiB2 particles on microstructure of semisolid 7075 Al alloy slurry. The mean grain size and shape factor of 3 wt% TiB2/7075 composite could reach 92 μm and 0.64 at 630 °C for 23 min, respectively, and for 6 wt% TiB2/7075 composite, they are 100 μm and 0.64 at 630 °C for 33 min. The microstructure evolution for TiB2/7075 composites in semisolid state includes three-stage process. α-Al begins to nucleate and grow up into rosette grains due to a low degree of supercooling at first. Then rosette grains begin to fuse or grow up at different rates. Finally, the dissolution rate and the growth rate of α-Al reach equilibrium.  相似文献   

19.
The (ABOw + WO3p)/Al hybrid composite was fabricated by squeeze casting and subsequently hot extruded at temperatures that varied from 440°C to 560°C. The microstructures of extruded composites were examined by scanning electron microscopy and transmission electron microscopy techniques. The results show that ABOw aligns along the extrusion direction after the hot extrusion process. The aspect ratio of ABOw in extruded composites is lower than that of as-cast composite. The aspect ratio of ABOw in extruded composites increases with the increase of extrusion temperature. The larger WO3p particles are broken into smaller particles during the extrusion process. The transmission electron microscopy (TEM) images show that hot deformation leads to high dislocation density at a lower deformation temperature and leads to grain recovery and recrystallization at a higher deformation temperature. The strength of extruded composites increases first and then decreases with the increase of extrusion temperature, and it reaches maximum value at 500°C. The elongation of extruded composites increases with the increase of extrusion temperature.  相似文献   

20.
20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号