首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探讨封隔压差和封隔间隙对封隔器胶筒封隔性能的影响,应用有限元分析软件,研究不同封隔压差和间隙下胶筒的Von Mises应力分布、胶筒与套管壁间接触应力的分布以及胶筒的变形情况。结果表明:随着封隔压差的增大,胶筒上端部的Von Mises应力值不断增大,胶筒失效的可能性增加,但胶筒与套管壁的接触应力值增大,胶筒的封隔能力增强;随着封隔间隙的增大,胶筒上端Von Mises应力值增大,胶筒剪切失效的可能性增加,且胶筒与套管壁的接触应力减小,胶筒的封隔能力下降。设计出一种蜗形状防突装置,分析其对胶筒封隔性能的影响。结果表明:蜗形保护环能有效地防止胶筒端部突出,且胶筒的应力分布更均匀,胶筒与套管壁间的接触应力值更大,提高了胶筒的封隔能力。  相似文献   

2.
低渗油藏水平井分段压裂压缩式封隔器,由于处于高温、高压、复杂深部地层环境,胶筒组常出现坐封力低和坐封提前失效、胶筒与中心管间产生渗漏等问题,导致封隔器密封失效。提出一种十字锥形隔环与槽形胶筒组组合的新密封结构,基于ABAQUS软件分析其胶筒组沿井壁、中心管轴向接触应力,沿井壁的Mises应力分布,以及硬度、坐封力对其接触应力的影响。研究表明,新型密封结构的胶筒组与井壁、中心管接触更加充分,各胶筒接触应力显著提高且分布均匀,保证了封隔器的密封可靠性;胶筒组与井壁间的Mises应力降低,避免了胶筒组被撕裂;随着硬度、坐封力的增加,胶筒组与井壁间的接触应力增加。  相似文献   

3.
封隔器是油田采油中重要的井下工具之一。封隔器的工作好坏,密封是关键。胶筒与套管之间的接触应力的大小,可以直接反应出封隔器的密封能力,接触应力越大,封堵压差的能力就越高,密封效果最好。采用非线性有限元分析方法,对封隔器胶筒与套管之间的接触应力进行研究,并对胶筒的壁厚进行了结构优化。综合考虑封隔装置受挤压后的变形过程和受力过程,得到此型号封隔器胶筒的最优壁厚。将最优胶筒壁厚的有限元分析结果与地面实验结果进行比较,前者可行有效,且具有较好的工程应用价值。  相似文献   

4.
李斌 《润滑与密封》2018,43(4):94-98
为了提高封隔器的密封性能,设计一种沿径向对称的梯形隔环和槽形胶筒组构成的新型密封结构,运用有限元分析方法模拟封隔器的工作状况,分析梯形隔环结构特性参数对封隔器密封性能影响,获得不同梯形隔环结构参数下封隔器胶筒组与套管壁间接触应力分布规律,并对新型密封结构进行优化。结果表明:新型密封结构选择梯形隔环中心线距离隔环端面距离10 mm、梯形隔环下底高9 mm、梯形隔环上底高8 mm,梯形隔环高度9 mm的特性参数时,其最大接触应力比常规密封结构提高了约84%。新型密封结构的胶筒组与套管壁的接触应力比常规封隔器有显著提高,提高封隔器的密封性能。  相似文献   

5.
双梯度钻井技术可解决深海油气和浅层水合物开发面临的疏松表层安全钻进和地层漏失压力低等难题。为研究双梯度钻井套管内压力隔断封隔器胶筒的力学性能,利用有限元仿真软件,分析不同摩擦因数、胶筒厚度、工作压力、环空间隙等因素作用下对胶筒变形的影响。采用正交试验对四种因素作用下胶筒的最大Mises应力值与接触压力值进行极差分析。结果表明:摩擦因数为0.3时胶筒与套管间接触压力取得较大值,双梯度钻井封隔器胶筒厚度优选为15 mm;在有效封隔2 MPa工作压力前提下,得出封隔器胶筒随钻柱滑动的最小摩擦力33 845 N;影响胶筒最大Mises应力的主要因素为工作压力与环空间隙,影响胶筒与套管间最大接触压力的主要因素为工作压力与胶筒厚度。  相似文献   

6.
为探讨深水测试双封隔器由密闭环空压力变化引起的变形与强度问题,建立双封隔器胶筒结构的力学分析模型。根据工作过程中封隔器间密闭环空压力的变化,对胶筒的密封性能进行分析,得到各胶筒的应变量、等效应力以及接触应力的变化情况。分析采用胶筒不同圆形倒角参数时封隔器胶筒与套管的接触特性,研究胶筒倒角参数对封隔器密封性能的影响,得出封隔器的优化结构参数。结果显示:各胶筒的应变量、等效应力以及接触应力均随密闭环空压力的增大而增大,其中下胶筒的增大幅度最明显;各胶筒变形量随着胶筒倒角的增大无明显变化,但等效应力随着胶筒倒角的增大均减小,而随着胶筒倒角的增大上胶筒和中胶筒的接触应力均增大,下胶筒的接触应力先增大后减小。因此,一定程度上增大胶筒倒角有利于提升封隔器的密封性能,倒角半径为0.75 mm时为最优结构。  相似文献   

7.
为了研究注水封隔器在工作过程中胶筒接触应力变化规律,以Y341注水封隔器为研究对象,利用管柱力学理论得到注水工况封隔器所受轴向力,运用ABAQUS有限元分析软件建立三维有限元分析模型,采用Yeoh模型得到橡胶模拟参数,对封隔器胶筒进行有限元三维应力仿真分析。分析表明:3个胶筒在坐封过程中整体受力趋势相同,在轴向坐封载荷作用下受力不均,下胶筒受力变形最大且肩部应力集中;随着轴向载荷的增大,肩部所受套管正压力不断上升;在不同轴向力作用下,封隔器胶筒对套管施加的力会有变化,套管受力与轴向拉力成负相关。通过有限元仿真分析技术,得到封隔器胶筒在坐封及注水工况下的力学规律,为封隔器设计及优化提供理论依据。  相似文献   

8.
研究原油高温热采工具 O 形橡胶密封圈在高温高压下的密封特性。借助于大型有限元分析软件 ANSYS,建立 O 形橡胶密封圈及其边界的二维轴对称有限元模型,研究油压、装配间隙和摩擦因数对密封面最大接触应力、剪切应力和 Von Mises 应力的影响,并采用热应力耦合分析方法,分析温度对 O 形密封圈密封性能的影响。结果表明:摩擦因数对应力影响不大,而油压和装配间隙对应力影响很大,过大的装配间隙会造成 O 形橡胶密封圈最大接触应力下降和最大剪切应力上升,造成密封失效;当温度升高时,密封圈最大剪切应力和接触应力相应减小,而最大 Von Mises 应力明显减小,因此应使 O 形密封圈在适当的温度下工作,以确保密封的可靠性。  相似文献   

9.
利用有限元分析软件建立封隔器胶筒模型,分析单一轴向载荷和轴向、扭转载荷共同作用下,胶筒与套管之间的接触应力及其沿轴向的分布规律,最大接触应力随胶筒端面角、子厚度、筒高3个结构参数和摩擦因数的变化,以及施加不同扭转载荷时对胶筒密封性能的影响。研究结果表明:在单一轴向载荷作用下,最大接触应力随倾斜角度增大先减小后增大,随子厚度的增加先增加后减小,随筒高的增加而减小,随摩擦因数增大先减小后增大;施加扭转载荷后,不同端面角、子厚度、筒高下胶筒的最大接触应力整体降低且波动较大,随摩擦因数增大胶筒接触面之间的摩擦力增大,加速了胶筒磨损和老化;不同扭转载荷作用下胶筒最大接触应力值波动较大,导致密封性能不稳定。因此,扭转载荷使得胶筒密封性降低,导致最大接触应力波动较大,使胶筒的密封性能存在不稳定性。  相似文献   

10.
封隔器超弹性胶筒所用的天然硫化橡胶添加了填充物,单纯利用理论研究无法选择合适的应变能函数模型。通过对填料填充橡胶材料进行单轴拉伸试验,拟合得到 Mooney-Rivlin 模型和 Yeoh 模型材料参数,并结合实验数据确定填料填充橡胶材料的应变能函数模型;采用 ANSYS 软件分析2种不同弹性模量的橡胶封隔器的坐封效果。结果表明,对于填料填充天然硫化橡胶材料,Yeoh 模型拟合效果更好;在相同载荷作用下,弹性模量小的填料填充橡胶材料变形量更大,胶筒最大 Von Mises 应力较小且最大接触应力较大,更适合用作封隔器的中胶筒。  相似文献   

11.
《机械强度》2017,(3):727-731
水平井裸眼分段压裂完井技术的核心工具之一是压缩式裸眼封隔器,由于封隔器处于高温、高压、复杂深部地层环境,常出现坐封压力低、坐封提前失效,主要原因是封隔器的密封结构不合理,胶筒与井壁间的接触应力低。基于弹性力学理论,推导出封隔器胶筒坐封时受到的最大接触压力,并提出了一种新型压缩式裸眼封隔器四胶筒组合的密封结构,利用Abaqus对比分析了常规和新型组合胶筒在相同条件下的接触应力分布规律,并对新型组合胶筒的端面斜角进行了优选,研究了摩擦因数对新型组合各胶筒接触应力的影响。分析表明,新型四胶筒组合封隔器能更加有效的将坐封压力传递给密封胶筒,使胶筒的接触应力显著提高且分布均匀,保证了胶筒密封的可靠性。  相似文献   

12.
桂鹏 《润滑与密封》2018,43(7):126-130
针对油气弹簧O形圈低温往复条件下普遍出现的失效现象,采用有限元方法建立O形圈摩擦力计算模型,研究常温与低温工况下O形圈的应力、接触宽度、摩擦力随油液压力的变化规律。结果表明,随油液压力的增加,常温下O形圈的应力、接触宽度、摩擦力均增大,而低温下Von Mises应力、接触宽度减小,接触应力和摩擦力增大;低温工况下O形圈的Von Mises应力、接触应力和摩擦力远大于常温工况;当油液压力大于12 MPa时,摩擦力随油液压力的变化率增加;低温工况下橡胶材料的玻璃化导致的O形圈拉力与摩擦力增大是其密封性能下降进而失效的主要因素,实际使用中必须予以考虑。  相似文献   

13.
利用ANSYS建立T形滑环组合密封的二维轴对称有限元模型,将密封结构划分为4个密封区域,研究静、动密封状态下介质压力、密封间隙、摩擦因数和T形滑环斜边与垂直线之间的角度,对组合密封圈密封性能的影响。仿真结果表明,T形滑环组合密封可以满足研究的压力范围下的静、动密封要求。其最大Von Mises应力和最大接触应力随介质压力增大而增大,随密封间隙增大而减小;最大Von Mises应力和最大接触应力随滑环斜边与垂直线之间角度增大而增大,当角度为2.5°~7.5°时,组合密封可达到密封要求且滑环不易磨损;摩擦因数越小,组合密封动密封性能越好。  相似文献   

14.
为研究往复密封轴用Y形密封圈在静、动密封工作时的密封性能,利用有限元软件ABAQUS建立了Y形密封圈二维轴对称有限元模型,讨论了工作压力、密封间隙、往复运动速度、摩擦系数对其密封性能的影响。结果表明:静密封工作时,Y形密封圈内部应力基本呈对称分布;动密封工作时,Y形密封圈内唇侧应力明显大于外唇侧应力,外行程应力变化波动幅度大于内行程相应应力变化波动幅度,外行程更易引起密封圈失效;Y形密封圈根部、上端开口处、内唇唇口、密封圈与活塞轴接触区域较易发生失效;Y形密封圈最大接触应力均大于相应工作压力,具有较好的密封性能;往复运动速度对最大Von Mises应力影响较小;工作压力、密封间隙、摩擦系数对最大剪切应力影响较大。  相似文献   

15.
以Von Mises屈服准则为胶层失效判据及基于应力分布的三维Hashin失效准则为复合材料层合板失效判据,采用材料刚度退化的方法,在ANSYS中建立了考虑复合材料层合板和胶层失效的复合材料胶接强度分析模型;利用该模型对复合材料胶接强度进行了准确预测.重点研究了胶层厚度和胶接长度两个设计参数对复合材料胶接强度的影响,结果表明:胶接强度在一定范围内随着胶层厚度和胶接长度的增大而增大,呈非线性关系.  相似文献   

16.
O形密封圈密封性能非线性有限元数值模拟   总被引:6,自引:1,他引:5  
利用ABAQUS软件建立海底采油设备用O形密封圈轴对称模型,对其在不同压缩率、不同油压时的Von Mi-ses应力及密封面接触压力分布规律进行探讨,确定O形密封圈材料易失效位置;分析压缩率和油压对O形密封圈最大Von Mises应力、最大接触压力及最大接触压与油压压差的影响。结果表明:O形密封圈最大Von Mises应力、密封面最大接触压力随压缩率和油压的增加而增加,且O形密封圈在中低高压下的密封能力高于超高下的密封能力,为海底采油设备用O形密封圈的结构设计及选型提供相关参考。  相似文献   

17.
建立了O形密封圈及其改进结构后的四种密封圈的有限元模型,通过ABAQUS软件分析了四种密封圈的Von Mises应力和接触应力,研究了工作压力、预压缩量、摩擦系数和密封圈直径对四种密封圈的密封性能影响。通过分析发现,密封圈截面形状的变化对其Von Mises应力和接触应力的大小及分布影响较大;预压缩量和摩擦系数对密封圈Von Mises应力和接触应力的影响呈现非线性变化;密封圈的接触应力与工作压力近似呈线性关系变化;密封圈的直径对其密封性能影响较小,但对使用寿命影响较大。  相似文献   

18.
为评估特殊螺纹接头的密封性能,充分考虑螺纹升角对特殊螺纹接头性能的影响,借助ABAQUS有限元软件建立某特殊螺纹接头的三维有限元模型,仿真分析ISO 13679标准B系载荷包络线加载路径下,该特殊螺纹接头密封面上的Von Mises应力及接触压力分布。结果表明:弯曲载荷对接头应力分布及接触压力分布状态影响较大;特殊螺纹接头密封面上的Von Mises应力及接触压力分布趋势一致,均为在受拉一侧Von Mises应力及接触压力数值较小,受压一侧Von Mises应力及接触压力数值较大;接头受拉一侧密封面上的接触压力随着轴向压缩载荷的增大而减小,特殊螺纹接头可能会发生密封失效。  相似文献   

19.
组合式弹性片金属密封环密封特性有限元分析   总被引:1,自引:0,他引:1  
利用ANSYS Workbench软件建立组合式弹性片金属密封环有限元模型,分析密封环初始压缩量、工作压力等对密封环最大Von Mises应力、接触应力大小及接触部位压力分布的影响。研究表明:组合式弹性片金属密封在不受工作压力情况下,顶块与封严片之间并不是完全接触的,不能起到密封效果,但在工作条件下,在一定的预压缩量下其顶块与封严片之间完全接触,满足密封要求;适当增加预压缩量可以提高密封环密封性能,但同时其所受的最大Von Mises应力也增大,当最大Von Mises应力大于材料的屈服极限时密封环会失效。通过计算得到弹性片的安全工作夹角范围,为组合式弹性片金属密封环的设计、安装及使用提供依据。  相似文献   

20.
根据有限元理论,建立了管法兰连接有限元模型,对管法兰用聚四氟乙烯密封垫片的密封性能进行了数值计算。研究了垫片在预紧状态和工作状态下的Von Mises应力和接触应力分布,分析了管道内介质压力对其应力和应力分布的影响。结果发现:垫片在工作状态下的Von Mises应力大于其在预紧状态下的;介质压力越大,垫片的Von Mises应力越大,但垫片的有效接触宽度越小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号