首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
试验研究了Sb对Mg-8Zn-4Al-0·3Mn铸造镁合金显微组织的影响。结果表明,含Sb铸造镁合金Mg-8Zn-4Al-0·3Mn-xSb的显微组织由基体α(Mg)、共晶[α(Mg) τ]、三元相τ(Mg32(Al,Zn)49、二元相MgZn2和Mg3Sb2组成;随着Sb含量的增加,合金晶界上三元相的形态逐渐由半连续网状变为分散均匀的颗粒状;w(Sb)=0.3%为最佳加入量,此时的合金铸态组织被明显细化,晶粒大小由120μm~130μm减小到50μm~60μm。同时,合金的显微硬度值也随Sb含量的增加而增加。  相似文献   

2.
RE对Mg-8Zn-4Al-0.3Mn合金组织的影响   总被引:35,自引:5,他引:35  
研究了RE对Mg-8Zn-4Al-0.3Mn铸造镁合金显微组织的影响。结果表明:Mg-8Zn-4Al-0.3Mn-χRE铸造镁合金的显微组织主要由口(Mg)基体、φ(Al2Mg5Zn2)相、r(Mg32(Al,Zn)49)相和Mg3Al4Zn2RE相组成。随RE加入量的增加,合金晶界上三元相的形态由半连续网状改变为颗粒状,三元相的分布逐渐变得弥散而均匀。晶界上针状或棒状Mg3Al4Zn2RE相的量也随着RE加入量的增加而增加。加入1.5%的RE可显著细化合金的铸态组织,晶粒大小由120~130μm减小到40-50μm。合金的显微硬度值随着RE加入量的增加而增加。  相似文献   

3.
试验研究了Al5TiB对Mg-16Zn-6Al-0.3Mn铸造镁合金显微组织的影响.结果表明,Mg-16Zn-6Al-0.3Mn铸造镁合金的显微组织主要由α(Mg)相和τ(Mg32(Al,Zn)49)相组成.加入Al5TiB后,Mg-16Zn-6Al-0.3Mn合金的显微组织主要由α(Mg)相和AlMg2Zn三元相组成.晶粒大小由120 μm~130 μm减小到30 μm~40 μm.  相似文献   

4.
研究了Mg-8Zn-2Si-0.5Ca合金及其热处理后的组织和性能。结果表明:铸态下合金由α-Mg相、MgZn相、Mg2Si相和CaSi。相组成。Mg2Si的形状为块状,颗粒较细小.Mg2Si的晶核为CaSi2相。固溶处理后.合金中原来呈骨骼状分布的MgZn相明显减少,并变得细小。固溶处理未能使Mg2Si相溶入基体组织中。时效处理后固溶到基体中的MgZn相以细小的弥散相析出。经固溶和时效处理后,合金的硬度明显提高。  相似文献   

5.
《铸造技术》2016,(10):2085-2088
研究了固溶处理对Mg-8Al-1Zn-1Si合金显微组织和力学性能的影响。结果表明,铸态合金主要由α-Mg、β-Mg17Al12和Mg_2Si相组成。固溶处理过程中,β-Mg17Al12相溶于基体而形成α-Mg过饱和固溶体,粗大的汉字状Mg_2Si相颗粒逐渐溶解、溶断而转变为相对细小的球状。随固溶处理时间延长,合金的硬度逐渐降低;室温与150℃下的抗拉强度、屈服强度和伸长率逐渐提高。合金的拉伸断裂形式为准解理脆性断裂。  相似文献   

6.
Al5TiB、RE对Mg-8Zn-4Al-0.3Mn合金显微组织和时效过程的影响   总被引:1,自引:0,他引:1  
关绍康  王迎新 《铸造技术》2004,25(5):374-377
研究Al5TiB、RE对Mg-8Zn-4Al-0.3Mn铸造镁合金显微组织、时效过程的影响.结果表明:加入Al5TiB的Mg-8Zn-4Al-0.3Mn合金的显微组织主要由Mg相、φ(Al2Mg5Zn2)相、τ(Mg32(Al,Zn)49)相组成.晶粒大小可由120~130 μm减少到30~40 μm.加入RE的Mg-8Zn-4Al-0.3Mn-xRE合金的显微组织主要由Mg相、φ(Al2Mg5Zn2)相、τ(Mg32(Al,Zn)49)相和Mg3Al4Zn2RE相组成.晶粒大小由120~130 μm减少到40~50 μm.合金的显微硬度值随RE加入量的增加而增加.随着Ti元素在合金中含量的增加,合金的析出相形成激活能呈先增大后减小的变化规律,而含RE元素合金的析出相形成激活能则随RE元素加入量的增大而增大.  相似文献   

7.
采用光学显微镜、扫描电镜、动态热分析仪和X射线衍射仪研究了固溶时效处理对Mg-4Zn-0.3Zr合金显微组织和阻尼性能的影响。结果表明,铸态合金晶粒尺寸约121μm,晶界粗大且有MgZn、MgZn2和Mg7Zn3相分布;固溶处理后,晶界处的MgZn、MgZn2和Mg7Zn3相基本溶入基体;时效处理后,晶界处有少量的颗粒状MgZn和MgZn2相析出。在低应变振幅区,铸态合金阻尼性能最好,在高应变振幅区,固溶态阻尼性能最好,固溶+时效态合金阻尼曲线的斜率最大;3种状态合金在低温区的阻尼峰均由晶界阻尼峰和位错阻尼峰叠加构成,固溶态和固溶+时效态合金在高温区的阻尼峰为弛豫型阻尼峰。  相似文献   

8.
低Si对Mg-8Zn-4Al-0.3Mn合金组织和性能的影响   总被引:4,自引:0,他引:4  
研究了低Si合金化对Mg-8Zn-4Al-0.3Mn合金组织和性能的影响.试验表明Si能明显提高合金的流动性和耐磨性,并能细化合金晶粒.当Si量(质量分数)小于0.41%时,合金的显微硬度、刚度、强度和塑性都得到了明显的提高.而当Si量(质量分数)达0.69%时,由于汉字状Mg2Si的出现,导致合金的显微硬度、刚度和塑性呈现下降趋势.同时由于剩余液相中Zn、Al摩尔浓度的降低使得τ相的析出受到抑制,而φ相的析出得到促进.  相似文献   

9.
研究了合金元素Sb对Mg-8Al-1Zn-1Si合金组织和性能的影响。结果表明:加入少量(0.2%~0.6%)Sb时,α-Mg基体和粗大的汉字状Mg2Si相颗粒有所细化,力学性能逐渐提高;当Sb达到0.8%时,Mg2Si颗粒全部转变为块状和短棒状,此时室温和150℃下的力学性能都达到最佳;当Sb含量超过0.8%后,合金中的Mg2Si又变为粗大的汉字状,力学性能下降。  相似文献   

10.
快速凝固Al-5Zn-2.5Mg-2.5Mn合金的显微组织演化   总被引:1,自引:0,他引:1  
利用DSC、X射线衍射 (XRD)、透射电镜 (TEM)和能谱分析研究了快速凝固Al 5Zn 2 5Mg 2 5Mn(质量分数 )合金急冷态和退火态的显微组织 ,同时测定了该合金的硬度。DSC曲线有四个放热峰 ,位于 90~ 110℃、2 6 0℃、4 6 0℃和 4 80℃ ,它们分别对应于 η相 (MgZn2 )、T相 (Al2 Mg3Zn3)、Al3Mn相和Al6 Mn相的析出或转变 ,分析结果与XRD和TEM分析一致。研究还表明 :快凝合金急冷态组织为过饱和Al基固溶体 ,无其它相存在 ;快凝合金经 30 0℃× 1h处理后 ,出现 η和T相 ,此时无Al Mn相出现 ;快凝合金经 5 0 0℃× 1h处理后 ,出现了Al Mn弥散相 ,而 η和T相溶入固溶体 ,Al的点阵常数和合金硬度变化验证了上述显微组织的演化过程。随着Al Mn相的析出或转变 ,合金硬度显著提高  相似文献   

11.
利用TEM和HRTEM研究Mg-8Zn-4Al-1Ca合金的时效微观组织。结果表明:Mg-8Zn-4Al-1Ca合金较Mg-8Zn-4A1合金时效硬度显著增高。Mg-8Zn-4Al-1Ca合金在160°C时效16 h,有大量的盘状Ca2Mg6Zn3相沉淀弥散析出,此外,合金的微观组织中还存在晶格畸变、蜂窝状的莫尔条纹、刃型位错及位错环;经48 h时效后合金中沉淀相为粗大的盘状沉淀相和细小、弥散的粒状沉淀相;经227 h时时效后后,其组织中存在大量MgZn2相和Ca2Mg6Zn3相。因此,在Mg-8Zn-4Al-1Ca时效160°C的合金中添加Ca元素能有效提高合金的时效硬度及促进MgZn2强化相的生成。  相似文献   

12.
采用光学显微镜、扫描电镜(附EDAX能量分散光谱系统)和差示扫描量热仪(DSC)等分析手段研究了不同Si含量(0~1.61wt%)对Mg-8Zn-4Al-0.3Mn(ZA84)合金时效过程的影响。结果表明,合金经固溶处理后显微硬度较铸态下提高了8%左右,其Mg2Si、τ(Mg32(Al,Zn)49)等相基本未溶入基体中。随着ZA84合金中加入Si量的增加,合金的析出相形成激活能呈增加趋势,峰值时效时间由ZA84合金的2h左右推迟至8h左右,析出相粗化时间较ZA84合金推迟4h以上。合金中加入不同含量Si后其峰值时效显微硬度提高幅度为4%~12%。  相似文献   

13.
采用Gleeble热模拟方法研究Mg?6Zn?1Al?0.3Mn 变形镁合金在温度为200~400°C,应变速率为0.01~7 s?1条件下的热压缩变形行为。结果表明,变形温度和应变速率显著影响其热变形行为。通过计算获得了热变形激活能及应力指数分别为Q=166 kJ/mol,n=5.99,且其本构方程为ε&=3.16×1013[sinh(0.010σ)]5.99exp [?1.66×105/(RT)]。热压缩显微组织观察表明:在应变速率为0.01~1 s?1的条件下,在250°C热压缩变形时初始晶粒晶界及孪晶处发生了部分动态再结晶,而在高温(350~400°C)条件下,发生了完全动态再结晶且再结晶晶粒尺寸随着应变速率的增加而减小。获得的较优的变形条件为温度330~400°C、应变速率为0.01~0.03 s?1以及350°C、应变速率为1 s?1。  相似文献   

14.
利用OM、SEM、EDS和抗拉强度测定等手段,研究了添加Si、Ca元素对Mg-1.6Mn变形镁合金显微组织与力学性能的影响.结果表明:Mg-1.6Mn-1.5Si-0.3Ca合金的铸态组织由α-Mg固溶体、块状或颗粒状Mg 2Si及β-Mn组成.Mg-1.6Mn合金中加入Si、Ca后,钙、硅化合物成为Mg 2Si初生相的异质形核核心,合金的晶粒明显细化,平均晶粒尺寸从加入前的60 μm细化到加入后的30 μm.Mg-1.6Mn-1.5Si-0.3Ca的抗拉强度为148 N/mm^2,伸长率达5.6%,分别比Mg-1.6Mn的提高54.2%和55.5%.  相似文献   

15.
研究了不同挤压温度和挤压比对Mg-4Al-1Zn-0.6Ca-0.6Si-0.4Nd镁合金显微组织和力学性能的影响.结果表明,挤压变形可以显著细化镁合金的晶粒,大幅度提高材料的抗拉强度,屈服强度和伸长率.较低的挤压温度和较高的挤压比配合可以更好地细化晶粒.在挤压比为16,挤压温度为330℃时,合金的抗拉强度、屈服强度、伸长率分别达到375MPa、305MPa、14%.  相似文献   

16.
采用光学显微镜(OM)、扫描电镜(SEM)、电子探针显微分析(EPMA)、X射线衍射(XRD)以及差示扫描量热仪(DSC),研究了一种高合金化Al-9Zn-2.0Mg-2Cu-0.3Ce(质量分数,%)合金的铸态微观组织,以及其均匀化过程中微观组织的演变,获得了较优的单级均匀化工艺.结果表明:铸态时,合金晶粒内部枝晶网...  相似文献   

17.
Mg-9Li-5Al-1Zn-0.6RE alloy was prepared by vacuum induction heating. The microstructure and phases composition of the alloy were analyzed with optical microscope, scanning electron microscope and X-ray diffractometer. Then the effect of homogenization temperature on microstructure and mechanical properties of the alloy was studied. The hardness of samples under different homogenization temperatures was measured. The results show that, the alloy is composed of a phase, β phase, Mg17Al12 and AlLi. RE added into the alloy is solved in a phase and β phase completely. After homogenization heat treatment, the needle-like a phase disappears. With the increase of homogenization temperature, the shape of a phase is spherical-like first, then vennicular-like, and large block-like finally. The variation of the shape of a phase causes the hardness of sample to change accordingly. The most favorable homogenization temperature for microstructure and mechanical properties is 150 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号