首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A simplified h-version of the adaptive boundary elements is proposed for the eigenvalue analysis of the Helmholtz equation. The new scheme considers the effect of each local boundary element refinement, not on the eigenvalue but on the eigenvector, which is devised for possible application of the conventional adaptive mesh construction strategy for boundary value problems. In this paper, for improvement of computational efficiency, the local reanalysis for obtaining the eigenvector is employed. The error indicator of the eigenvector in place of that of the eigenvalue, the global value, decides selectively the boundary elements to be refined. Utility of the proposed method is compared, through some examples, with those previously developed.  相似文献   

2.
《国际计算机数学杂志》2012,89(17):2392-2409
In this article, a new integral equation is derived to solve the exterior problem for the Helmholtz equation with mixed boundary conditions in three dimensions, and existence and uniqueness is proven for all wave numbers. We apply the boundary element collocation method to solve the system of Fredholm integral equations of the second kind, where we use constant interpolation. We observe superconvergence at the collocation nodes and illustrate it with numerical results for several smooth surfaces.  相似文献   

3.
《国际计算机数学杂志》2012,89(11):1463-1487
This paper presents new formulations of the boundary–domain integral equation (BDIE) and the boundary–domain integro-differential equation (BDIDE) methods for the numerical solution of the two-dimensional Helmholtz equation with variable coefficients. When the material parameters are variable (with constant or variable wave number), a parametrix is adopted to reduce the Helmholtz equation to a BDIE or BDIDE. However, when material parameters are constant (with variable wave number), the standard fundamental solution for the Laplace equation is used in the formulation. The radial integration method is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed methods.  相似文献   

4.
Applying the trigonometric wavelets and the multiscale Galerkin method, we investigate the numerical solution of the boundary integral equation reduced from the exterior Dirichlet problem of Helmholtz equation by the potential theory. Consequently, we obtain a matrix compression strategy, which leads us to a fast algorithm. Our truncated treatment is simple, the computational complexity and the condition number of the truncated coefficient matrix are bounded by a constant. Furthermore, the entries of the stiffness matrix can be evaluated from the Fourier coefficients of the kernel of the boundary integral equation. Examples given for demonstrating our numerical method shorten the runtime obviously.  相似文献   

5.
This paper presents a fast singular boundary method (SBM) for three-dimensional (3D) Helmholtz equation. The SBM is a boundary-type meshless method which incorporates the advantages of the boundary element method (BEM) and the method of fundamental solutions (MFS). It is easy-to-program, and attractive to the problems with complex geometries. However, the SBM is usually limited to small-scale problems, because of the operation count of O(N3) with direct solvers or O(N2) with iterative solvers, as well as the memory requirement of O(N2). To overcome this drawback, this study makes the first attempt to employ the precorrected-FFT (PFFT) to accelerate the SBM matrix–vector multiplication at each iteration step of the GMRES for 3D Helmholtz equation. Consequently, the computational complexity can be reduced from O(N2) to O(NlogN) or O(N). Three numerical examples are successfully tested on a desktop computer. The results clearly demonstrate the accuracy and efficiency of the developed fast PFFT-SBM strategy.  相似文献   

6.
By considering the close relationship between the multiple reciprocity boundary element formulation and that of the fundamental solution of the Helmholtz differential operator, we present a new complex-valued integral equation formulation for the eigenvalue analysis of the scalar-valued Helmholtz equation. Eigenvalues are determined as local minima of the determinant of the coefficient matrix of the discretized equation iteratively by the Newton scheme. The necessary recurrence formula is derived and computed with high efficiency, due to polynomial representation of the matrix components. Some example computations demonstrate the utility of the proposed formulation and eigenvalue determination scheme, and construction of adaptive boundary elements for the eigenvalue determination is attempted.  相似文献   

7.
Although parallelization of computationally intensive algorithms has become a standard with the scientific community, the possibility of in-core vectorization is often overlooked. With the development of modern HPC architectures, however, neglecting such programming techniques may lead to inefficient code hardly utilizing the theoretical performance of nowadays CPUs. The presented paper reports on explicit vectorization for quadratures stemming from the Galerkin formulation of boundary integral equations in 3D. To deal with the singular integral kernels, two common approaches including the semi-analytic and fully numerical schemes are used. We exploit modern SIMD (Single Instruction Multiple Data) instruction sets to speed up the assembly of system matrices based on both of these regularization techniques. The efficiency of the code is further increased by standard shared-memory parallelization techniques and is demonstrated on a set of numerical experiments.  相似文献   

8.
9.
《国际计算机数学杂志》2012,89(11):2306-2330
Richardson extrapolation is used to improve the accuracy of the numerical solutions for the normal boundary flux and for the interior potential resulting from the boundary element method. The boundary integral equations arise from a direct boundary integral formulation for solving a Dirichlet problem for the Laplace equation. The Richardson extrapolation is used in two different applications: (i) to improve the accuracy of the collocation solution for the normal boundary flux and, separately, (ii) to improve the solution for the potential in the domain interior. The main innovative aspects of this work are that the orders of dominant error terms are estimated numerically, and that these estimates are then used to develop an a posteriori technique that predicts if the Richardson extrapolation results for applications (i) and (ii) are reliable. Numerical results from test problems are presented to demonstrate the technique.  相似文献   

10.
In Part I [T. Strouboulis, I. Babuška, R. Hidajat, The generalized finite element method for Helmholtz equation: theory, computation, and open problems, Comput. Methods Appl. Mech. Engrg. 195 (2006) 4711-4731] we introduced the q-version of the generalized finite element method (GFEM) for the Helmholtz equation and we addressed its: (a) pollution error due to the wave number; (b) exponential q-convergence; (c) robustness to perturbations of the mesh, the roundoff and numerical quadrature errors; and (d) a-posteriori error estimation. Here we continue the development of the GFEM for Helmholtz and we address the effects of: (a) alternative handbook functions and mesh types; (b) the error due to the artificial truncation boundary conditions and its assessment. The conclusions are: (1) the employment of plane-wave, wave-band, and Vekua handbook functions lead to equivalent results; and (2) for high q, the most significant component of error may be the one due to the artificial truncation boundary conditions. A rather straightforward approach for assessing this error is proposed.  相似文献   

11.
In this paper, the continuous and discrete optimal transmission conditions for the Schwarz algorithm without overlap for the Helmholtz equation are studied. Since such transmission conditions lead to non-local operators, they are approximated through two different approaches. The first approach, called optimized, consists of an approximation of the optimal continuous transmission conditions with partial differential operators, which are then optimized for efficiency. The second approach, called approximated, is based on pure algebraic operations performed on the optimal discrete transmission conditions. After demonstrating the optimal convergence properties of the Schwarz algorithm new numerical investigations are performed on a wide range of unstructured meshes and arbitrary mesh partitioning with cross points. Numerical results illustrate for the first time the effectiveness, robustness and comparative performance of the optimized and approximated Schwarz methods on a model problem and on industrial problems.  相似文献   

12.
In this paper, a Cauchy problem for the Helmholtz equation is considered. It is known that such a problem is severely ill-posed, i.e. the solution does not depend continuously on the given Cauchy data. We propose a quasi-reversibility regularization method to solve it. Convergence estimates are established under two different a priori assumptions for an exact solution. Numerical results obtained by two different schemes show that our proposed methods work well.  相似文献   

13.
The boundary element method (BEM) is a popular method to solve various problems in engineering and physics and has been used widely in the last two decades. In high-order discretization the boundary elements are interpolated with some polynomial functions. These polynomials are employed to provide higher degrees of continuity for the geometry of boundary elements, and also they are used as interpolation functions for the variables located on the boundary elements. The main aim of this paper is to improve the accuracy of the high-order discretization in the two-dimensional BEM. In the high-order discretization, both the geometry and the variables of the boundary elements are interpolated with the polynomial function Pm, where m denotes the degree of the polynomial. In the current paper we will prove that if the geometry of the boundary elements is interpolated with the polynomial function Pm+1 instead of Pm, the accuracy of the results increases significantly. The analytical results presented in this work show that employing the new approach, the order of convergence increases from O(L0)m to O(L0)m+1 without using more CPU time where L0 is the length of the longest boundary element. The theoretical results are also confirmed by some numerical experiments.  相似文献   

14.
In this paper, we consider the identification of a corrosion boundary for the two-dimensional Laplace equation. A boundary collocation method is proposed for determining the unknown portion of the boundary from the Cauchy data on a part of the boundary. Since the resulting matrix equation is badly ill-conditioned, a regularized solution is obtained by employing the Tikhonov regularization technique, while the regularization parameter is provided by the generalized cross-validation criterion. Numerical examples show that the proposed method is reasonable and feasible.  相似文献   

15.
The boundary element-free method (BEFM) is developed in this paper for numerical solutions of 2D interior and exterior Helmholtz problems with mixed boundary conditions of Dirichlet and Neumann types. A unified boundary integral equation is established for both interior and exterior problems. By using the improved interpolating moving least squares method to form meshless shape functions, mixed boundary conditions in the BEFM can be satisfied directly and easily. Detailed computational formulas are derived to compute weakly and strongly singular integrals over linear and higher order integration cells. Three numerical integration procedures are developed for the computation of strongly singular integrals. Numerical examples involving acoustic scattering and radiation problems are presented to show the accuracy and efficiency of the meshless method.  相似文献   

16.
In this numerical method for simultaneous reconstruction of permittivity and conductivity in the one-dimensional inverse problem for the Helmholtz equation, a system of Riccati equations with trace formulae is derived, then used to propagate reflection and transmission data into the interior of an interval to obtain inhomogeneous material profiles. Numerical results are examined.  相似文献   

17.
18.
In this work, point-wise discretization error is bounded via interval approach for the elasticity problem using interval boundary element formulation. The formulation allows for computation of the worst case bounds on the boundary values for the elasticity problem. From these bounds the worst case bounds on the true solution at any point in the domain of the system can be computed. Examples are presented to demonstrate the effectiveness of the treatment of local discretization error in elasticity problem via interval methods.  相似文献   

19.
The Cauchy problem for the Helmholtz equation is considered. This problem is severely ill-posed, that is, the solution does not depend continuously on the data. To solve the problem numerically a mollification method is proposed. Convergence on error estimates between the exact solution and its approximation are obtained. Some numerical examples are given to show that the method works effectively.  相似文献   

20.
In this paper, we construct a backward Euler full-discrete two-grid finite element scheme for the two-dimensional time-dependent Schrödinger equation. With this method, the solution of the original problem on the fine grid is reduced to the solution of same problem on a much coarser grid together with the solution of two Poisson equations on the same fine grid. We analyze the error estimate of the standard finite element solution and the two-grid solution in the H1 norm. It is shown that the two-grid algorithm can achieve asymptotically optimal approximation as long as the mesh sizes satisfy H=O(hkk+1). Finally, a numerical experiment indicates that our two-grid algorithm is more efficient than the standard finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号