首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlation filters (CF) achieve excellent performance in visual tracking but suffer from undesired boundary effects. A significant amount of approaches focus on enlarging search regions to make up for this shortcoming. However, this introduces excessive background noises and misleads the filter into learning from the ambiguous information. In this paper, we propose a novel target-adaptive correlation filter (TACF) that incorporates context and spatial-temporal regularizations into the CF framework, thus learning a more robust appearance model in the case of large appearance variations. Besides, it can be effectively optimized via the alternating direction method of multipliers(ADMM), thus achieving a global optimal solution. Finally, an adaptive updating strategy is presented to discriminate the unreliable samples and alleviate the contamination of these training samples. Extensive evaluations on OTB-2013, OTB-2015, VOT-2016, VOT-2017 and TC-128 datasets demonstrate that our TACF is very promising for various challenging scenarios compared with several state-of-the-art trackers, with real-time performance of 20 frames per second(fps).  相似文献   

2.
视觉追踪是在计算机视觉的一个重要区域。怎么处理照明和吸藏问题是一个挑战性的问题。这份报纸论述一篇小说和有效追踪算法处理如此的问题。一方面,一起始的外观总是有的目标清除轮廓,它对照明变化光不变、柔韧。在另一方面,特征在追踪起一个重要作用,在哪个之中 convolutional 特征显示出有利性能。因此,我们采用卷的轮廓特征代表目标外观。一般来说,一阶的衍生物边坡度操作员在由卷检测轮廓是有效的他们与图象。特别, Prewitt 操作员对水平、垂直的边更敏感,当 Sobel 操作员对斜边更敏感时。内在地, Prewitt 和 Sobel 与对方一起是补足的。技术上说,这份报纸设计二组 Prewitt 和 Sobel 边察觉者提取一套完全的 convolutional 特征,它包括水平、垂直、斜的边特征。在第一个框架,轮廓特征从目标被提取构造起始的外观模型。在有这些轮廓特征的试验性的图象的分析以后,明亮的部分经常提供更有用的信息描述目标特征,这能被发现。因此,我们建议一个方法比较候选人样品和我们仅仅使用明亮的象素的训练模型的类似,它使我们的追踪者有能力处理部分吸藏问题。在得到新目标以后,变化以便改编外观,我们建议相应联机策略逐渐地更新我们的模型。convolutional 特征由井综合的 Prewitt 和 Sobel 边察觉者提取了的实验表演能是足够有效的学习柔韧的外观模型。九个挑战性的序列上的众多的试验性的结果证明我们的建议途径与最先进的追踪者比较很有效、柔韧。  相似文献   

3.
当被跟踪目标受变形、遮挡、快速和不规则运动等因素的干扰时,基于单一颜色特征的相关滤波器跟踪算法难以实现精准的目标定位。为此,分析基于多通道颜色特征Color Names(CN)的核相关滤波器算法(KCF),结合CN特征与颜色统计特征提出一种改进算法。使用掩模矩阵对CN特征的训练样本进行裁切,以提高真实样本的比例。在此基础上,将CN特征与颜色统计特征用于位置相关滤波器的训练,分别获得目标位置,并对两者进行加权处理,得到最终的目标跟踪结果。实验结果表明,与KCF和benchmark_tracker库中性能较优的算法相比,该算法在目标变形、遮挡等干扰下的跟踪精确度和成功率较高。  相似文献   

4.
Incremental Learning for Robust Visual Tracking   总被引:23,自引:0,他引:23  
Visual tracking, in essence, deals with non-stationary image streams that change over time. While most existing algorithms are able to track objects well in controlled environments, they usually fail in the presence of significant variation of the object’s appearance or surrounding illumination. One reason for such failures is that many algorithms employ fixed appearance models of the target. Such models are trained using only appearance data available before tracking begins, which in practice limits the range of appearances that are modeled, and ignores the large volume of information (such as shape changes or specific lighting conditions) that becomes available during tracking. In this paper, we present a tracking method that incrementally learns a low-dimensional subspace representation, efficiently adapting online to changes in the appearance of the target. The model update, based on incremental algorithms for principal component analysis, includes two important features: a method for correctly updating the sample mean, and a forgetting factor to ensure less modeling power is expended fitting older observations. Both of these features contribute measurably to improving overall tracking performance. Numerous experiments demonstrate the effectiveness of the proposed tracking algorithm in indoor and outdoor environments where the target objects undergo large changes in pose, scale, and illumination.  相似文献   

5.
International Journal of Computer Vision - Visual tracking of generic objects is one of the fundamental but challenging problems in computer vision. Here, we propose a novel fully convolutional...  相似文献   

6.
符强  昌涛  任风华  纪元法 《计算机仿真》2021,38(12):267-271
针对相关滤波类目标跟踪算法在目标出现遮挡、目标快速移动、复杂背景等情况下跟踪精度低的问题,提出了一种上下文感知自适应的相关滤波跟踪算法.首先,提取目标周围8个方向的背景样本为相关滤波器提供训练样本,然后利用粒子滤波对目标的运动状态进行估计,预测目标的运动方向.在训练滤波器时,给予目标运动方向上的背景样本更多的权重;接着,引入了一种新的模型更新判别依据APCE,只有当APCE值和响应最大值同时分别以一定比例大于各自的历史平均值时,才对模型进行更新;最后将上述算法与当前一些主流的跟踪算法在基准测试集OTB100上进行实验对比.实验结果表明,所提算法的成功率为0.647,精确度为0.866,与其中最优算法相比,分别提高了4.7%和7.3%.且上述算法具有较强的鲁棒性.  相似文献   

7.
基于随机有限集理论的多伯努利滤波方法能够有效处理多目标跟踪中数目未知且时变的问题,但难以适应复杂环境下视频多目标跟踪中目标之间或背景等干扰问题,尤其是目标相互紧邻和被遮挡时,会导致跟踪精度下降,甚至目标漏跟。针对该问题,在多伯努利滤波框架下,深度分析目标的特征信息,引入抗干扰的卷积特征,提出基于卷积特征的多伯努利视频多目标跟踪算法,并在目标状态提取过程中,进一步提出模板更新,使用自适应学习速率进行更新,适应目标的变化,以解决目标紧邻相互干扰的问题。最后,引入粒子标记技术,实现对视频多目标的航迹跟踪。实验结果表明,提出算法能够有效区分复杂环境下的紧邻多目标,且具有较好的跟踪精度。  相似文献   

8.
Tracking objects that undergo abrupt appearance changes and heavy occlusions is a challenging problem which conventional tracking methods can barely handle.To address the problem, we propose an online structure learning algorithm that contains three layers: an object is represented by a mixture of online structure models (OSMs) which are learnt from block-based online random forest classifiers (BORFs).BORFs are able to handle occlusion problems since they model local appearances of the target.To further improve the tracking accuracy and reliability, the algorithm utilizes mixture relational models (MRMs) as multi-mode context information to integrate BORFs into OSMs.Furthermore, the mixture construction of OSMs can avoid over-fitting effectively and is more flexible to describe targets.Fusing BORFs with MRMs, OSMs capture the discriminative parts of the target, which guarantees the reliability and robustness of our tracker.In addition, OSMs incorporate with block occlusion reasoning to update our BORFs and MRMs, which can deal with appearance changes and drifting problems effectively.Experiments on challenging videos show that the proposed tracker performs better than several state-of-the-art algorithms.  相似文献   

9.
Object identification is a specialized type of recognition in which the category (e.g. cars) is known and the goal is to recognize an object’s exact identity (e.g. Bob’s BMW). Two special challenges characterize object identification. First, inter-object variation is often small (many cars look alike) and may be dwarfed by illumination or pose changes. Second, there may be many different instances of the category but few or just one positive “training” examples per object instance. Because variation among object instances may be small, a solution must locate possibly subtle object-specific salient features, like a door handle, while avoiding distracting ones such as specular highlights. With just one training example per object instance, however, standard modeling and feature selection techniques cannot be used. We describe an on-line algorithm that takes one image from a known category and builds an efficient “same” versus “different” classification cascade by predicting the most discriminative features for that object instance. Our method not only estimates the saliency and scoring function for each candidate feature, but also models the dependency between features, building an ordered sequence of discriminative features specific to the given image. Learned stopping thresholds make the identifier very efficient. To make this possible, category-specific characteristics are learned automatically in an off-line training procedure from labeled image pairs of the category. Our method, using the same algorithm for both cars and faces, outperforms a wide variety of other methods.  相似文献   

10.
针对当前相关滤波跟踪算法在抗背景干扰、响应融合方式以及模型更新策略上的不足,提出一种基于上下文感知与自适应响应融合的相关滤波跟踪算法.通过引入上下文感知技术,提高算法在背景杂波及遮挡等跟踪场景下的鲁棒性;通过研究HOG特征和颜色直方图特征二者响应图和响应值的特点,提出一种自适应响应融合方法,提升融合响应图的可靠性;在模...  相似文献   

11.
Visual tracking in cluttered environments is attractive and challenging. This paper establishes a probabilistic framework, called the visual probabilistic data-association filter (VPDAF), to deal with this problem. The algorithm is based on the probabilistic data-association method for estimating a true target from a cluster of measurements. There are two other key concepts which are involved in VPDAF. First, the sensor data are visual, similar to the target in the image space, which is a crucial property that should not be ignored in target estimation. Second, the traditional probabilistic data-association filter for the underlying application is vulnerable to stationary disturbances in image space, mainly due to some annoying background scenes which are rather similar to the target. Intuitively, such persistent noises should be separated out and cleared away from the continuous measurement data for seeking successful target detection. The proposed VPDAF framework, which incorporates template matching, can achieve the goal of reliable realtime visual tracking. To demonstrate the superiority of the system performance, extensive yet challenging experiments have been conducted  相似文献   

12.
基于核函数粒子滤波和多特征自适应融合的目标跟踪   总被引:1,自引:0,他引:1  
经典粒子滤波及其改进算法在观测模型与真实情况存在偏差时会导致滤波发散,针对这一问题,提出一种核函数粒子滤波算法.该算法根据目标状态与粒子状态之间的距离,利用核函数产生权值对粒子进行二次加权,根据粒子的二次加权结果进行粒子重采样;以改进的粒子滤波算法为框架,提出了一种自适应多特征融合目标跟踪方法,利用相似性度量动态地评价特征对目标与背景的区分能力,并自适应地计算特征融合权重,以适应目标跟踪过程中目标与背景的变化,提高目标跟踪的鲁棒性.实验结果表明,文中提出的目标跟踪方法比经典粒子滤波目标跟踪方法具有更强的抗干扰性能和较高的跟踪精度.  相似文献   

13.
In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing $\ell _{p,q}$ mixed norms $(\text{ specifically} p\in \{2,\infty \}$ and $q=1),$ we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular $L_1$ tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259–2272, 2011) is a special case of our MTT formulation (denoted as the $L_{11}$ tracker) when $p=q=1.$ Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers.  相似文献   

14.
针对核相关滤波目标跟踪算法中对局部上下文区域图像提取的HOG特征图在复杂环境下不能保证目标跟踪的精度问题,提出了一种核相关滤波与孪生网络相结合的目标跟踪算法.首先在首帧输入图像中提取HOG特征图并建立相关滤波器模板,同时提取经过孪生网络的目标区域图像特征图;然后若后续帧输入图像帧数不为5的倍数则提取仿射变换HOG特征图...  相似文献   

15.
提出了一种新的融合多特征的基于改进模拟退火粒子滤波跟踪算法。首先,针对重要性采样粒子滤波算法中重要性抽样密度函数未考虑最近观测值,不能有效逼近真实后验密度函数的问题,通过采用改进的模拟退火(SA)方法优化重要抽样密度函数,并利用不同温度下扰动函数和Metropolis准则克服粒子匮乏缺陷;同时,针对SA方法在粒子滤波视觉跟踪应用上效率不高的缺陷,对经典模拟退火算法进行改进,降低了参数选择的敏感性,保持了原算法全局寻优的优点,提高了算法的速度。  相似文献   

16.
针对当前目标跟踪领域中如何准确迅速地区分目标和背景的问题,大部分跟踪器的核心内容是如何训练一个判别分类器来区分目标和周围环境。目前较为先进的核相关滤波器算法(KCF)及其改进后的判别式相关滤波器(DCF)将判别分类器与傅里叶变换相结合来提升跟踪速度,一些基于KCF的优化算法对部分跟踪难题,如针对尺度问题的KCF算法和针对目标消失的KCF算法提出了解决方案。但当前已有算法在提高精度方面仍有一定的提升空间,针对此,在核相关滤波器的基础上,从TSK模糊逻辑系统(TSK-FLS)的角度出发推导出了一种新的模糊核相关滤波器(FKCF)。FKCF继承了前者的高速和计算量小的特性,为了提高鲁棒性,将之前简单的高斯映射换成了模糊隶属度函数,并且在核计算的过程中引入了后件参数。由于这两项改进,使得在跟踪精度方面比KCF更好。将FKCF算法与KCF等相关算法在OTB50等4个数据集中的50个随机选取的视频上进行了实验,10项常见属性上的精度均有提升。  相似文献   

17.
针对非线性目标跟踪中模型或函数近似等最优估计缺陷问题,提出了基于帧间预测和特征匹配的序列蒙特卡罗滤波跟踪算法.算法中采用在HSV色彩下的空间加权直方图描述跟踪车辆的状态特征,通过简单的随机漂移模型实现估测样本的帧间传递,利用估测样本与期望目标间的相似度量完成样本权重赋值运算,最终利用加权样本值估计实现待测目标的后验状态.实验结果表明,基于序列蒙特卡罗滤波的车辆跟踪算法计算简单有效,能够在复杂环境下实时、准确跟踪道路上无规律、非线性运动的车辆,并能够有效适应车辆部分遮挡和短时丢失等情况.  相似文献   

18.
International Journal of Control, Automation and Systems - This paper addresses multi-target tracking using a monocular vision sensor. To overcome the fundamental observability issue of the...  相似文献   

19.
Visual tracking can be treated as a parameter estimation problem that infers target states based on image observations from video sequences. A richer target representation may incur better chances of successful tracking in cluttered and dynamic environments, and thus enhance the robustness. Richer representations can be constructed by either specifying a detailed model of a single cue or combining a set of rough models of multiple cues. Both approaches increase the dimensionality of the state space, which results in a dramatic increase of computation. To investigate the integration of rough models from multiple cues and to explore computationally efficient algorithms, this paper formulates the problem of multiple cue integration and tracking in a probabilistic framework based on a factorized graphical model. Structured variational analysis of such a graphical model factorizes different modalities and suggests a co-inference process among these modalities. Based on the importance sampling technique, a sequential Monte Carlo algorithm is proposed to provide an efficient simulation and approximation of the co-inferencing of multiple cues. This algorithm runs in real-time at around 30 Hz. Our extensive experiments show that the proposed algorithm performs robustly in a large variety of tracking scenarios. The approach presented in this paper has the potential to solve other problems including sensor fusion problems.  相似文献   

20.
Good tracking performance is in general attributed to accurate representation over previously obtained targets and/or reliable discrimination between the target and the surrounding background. In this work, a robust tracker is proposed by integrating the advantages of both approaches. A subspace is constructed to represent the target and the neighboring background, and their class labels are propagated simultaneously via the learned subspace. In addition, a novel criterion is proposed, by taking account of both the reliability of discrimination and the accuracy of representation, to identify the target from numerous target candidates in each frame. Thus, the ambiguity in the class labels of neighboring background samples, which influences the reliability of the discriminative tracking model, is effectively alleviated, while the training set still remains small. Extensive experiments demonstrate that the proposed approach outperforms most state-of-the-art trackers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号