共查询到20条相似文献,搜索用时 0 毫秒
1.
依靠高效的鉴别回归模型和多线索特征,如方向梯度直方图(HOG)特征和颜色名(CN)特征,相关滤波(CF)跟踪算法取得了优异的跟踪效果。但其弱点是不能应对由表观变化过程中鉴别信息不充分而导致的跟踪失败。针对这一问题,提出了基于自学习特征的相关滤波跟踪算法(SLDCF)。其中,自学习特征探索了相邻帧之间协同表示的特性,能够学习到相邻帧之间的目标变化情况,同时有效减少背景的干扰,以提高滤波器的鉴别性。通过标准视频数据集上的验证对比实验,其跟踪效果优于其余传统的相关滤波跟踪算法,证明了该算法的有效性和鲁棒性。 相似文献
2.
Correlation filters (CF) achieve excellent performance in visual tracking but suffer from undesired boundary effects. A significant amount of approaches focus on enlarging search regions to make up for this shortcoming. However, this introduces excessive background noises and misleads the filter into learning from the ambiguous information. In this paper, we propose a novel target-adaptive correlation filter (TACF) that incorporates context and spatial-temporal regularizations into the CF framework, thus learning a more robust appearance model in the case of large appearance variations. Besides, it can be effectively optimized via the alternating direction method of multipliers(ADMM), thus achieving a global optimal solution. Finally, an adaptive updating strategy is presented to discriminate the unreliable samples and alleviate the contamination of these training samples. Extensive evaluations on OTB-2013, OTB-2015, VOT-2016, VOT-2017 and TC-128 datasets demonstrate that our TACF is very promising for various challenging scenarios compared with several state-of-the-art trackers, with real-time performance of 20 frames per second(fps). 相似文献
3.
Robust Visual Tracking Based on Convolutional Features with Illumination and Occlusion Handing
下载免费PDF全文

视觉追踪是在计算机视觉的一个重要区域。怎么处理照明和吸藏问题是一个挑战性的问题。这份报纸论述一篇小说和有效追踪算法处理如此的问题。一方面,一起始的外观总是有的目标清除轮廓,它对照明变化光不变、柔韧。在另一方面,特征在追踪起一个重要作用,在哪个之中 convolutional 特征显示出有利性能。因此,我们采用卷的轮廓特征代表目标外观。一般来说,一阶的衍生物边坡度操作员在由卷检测轮廓是有效的他们与图象。特别, Prewitt 操作员对水平、垂直的边更敏感,当 Sobel 操作员对斜边更敏感时。内在地, Prewitt 和 Sobel 与对方一起是补足的。技术上说,这份报纸设计二组 Prewitt 和 Sobel 边察觉者提取一套完全的 convolutional 特征,它包括水平、垂直、斜的边特征。在第一个框架,轮廓特征从目标被提取构造起始的外观模型。在有这些轮廓特征的试验性的图象的分析以后,明亮的部分经常提供更有用的信息描述目标特征,这能被发现。因此,我们建议一个方法比较候选人样品和我们仅仅使用明亮的象素的训练模型的类似,它使我们的追踪者有能力处理部分吸藏问题。在得到新目标以后,变化以便改编外观,我们建议相应联机策略逐渐地更新我们的模型。convolutional 特征由井综合的 Prewitt 和 Sobel 边察觉者提取了的实验表演能是足够有效的学习柔韧的外观模型。九个挑战性的序列上的众多的试验性的结果证明我们的建议途径与最先进的追踪者比较很有效、柔韧。 相似文献
4.
针对复杂环境下仅使用单一图像特征跟踪精度和鲁棒性差的问题,提出一种多特征融合的相关滤波目标跟踪算法。该算法首先从目标和背景区域分别提取方向梯度直方图(Histogram of oriented gradient,HOG)特征、颜色直方图特征和卷积特征,采用固定权重方法融合HOG特征和颜色直方图特征的特征响应图,然后将该层融合结果与卷积特征响应图采用自适应权重融合策略进行融合,基于融合后的响应图估计出目标位置,并采用尺度估计方法解决目标尺度变化问题,最后采用稀疏模型更新策略进行模型更新。在OTB-2013公开标准测试集中验证本文算法性能,并与主流的目标跟踪算法进行了对比分析。实验结果表明,与其中最优算法相比,本文算法的平均距离精度值和平均重叠精度值都有所提高。本文算法由于有效地利用了HOG特征、颜色直方图特征和卷积特征,在复杂场景下目标跟踪的准确性和鲁棒性都优于其他算法。 相似文献
5.
《Displays》2021
With the introduction of correlation filtering (CF), the performance of visual object tracking is significantly improved. Circular shifts collecting samples is a key component of the CF tracker, and it also causes negative boundary effects. Most trackers add spatial regularization to alleviate boundary effects well. However, these trackers ignore the effect of environmental changes on tracking performance, and the filter discriminates poorly in the background interference. Here, to break these limitations, we propose a new correlation filter model, namely Environmental Perception with Spatial Regularization Correlation Filter for Visual Tracking. Specifically, we use the Average Peak to Correlation Energy (APCE) and the response value error between the two frames together to perceive environmental changes, which adjusts the learning rate to make the template more adaptable to environmental changes. To enhance the discriminatory capability of the filter, we use real background information as negative samples to train the filter model. In addition, the introduction of the regular term destroys the closed solution of CF, and this problem can be effectively solved by the use of the alternating direction method of multipliers (ADMM). Extensive experimental evaluations on three large tracking benchmarks are performed, which demonstrate the good performance of the proposed method over some of the state-of-the-art trackers. 相似文献
6.
当被跟踪目标受变形、遮挡、快速和不规则运动等因素的干扰时,基于单一颜色特征的相关滤波器跟踪算法难以实现精准的目标定位。为此,分析基于多通道颜色特征Color Names(CN)的核相关滤波器算法(KCF),结合CN特征与颜色统计特征提出一种改进算法。使用掩模矩阵对CN特征的训练样本进行裁切,以提高真实样本的比例。在此基础上,将CN特征与颜色统计特征用于位置相关滤波器的训练,分别获得目标位置,并对两者进行加权处理,得到最终的目标跟踪结果。实验结果表明,与KCF和benchmark_tracker库中性能较优的算法相比,该算法在目标变形、遮挡等干扰下的跟踪精确度和成功率较高。 相似文献
7.
主流的目标跟踪算法以矩形模板的形式建立被跟踪物体的视觉表征, 无法有效区分目标与背景像素, 在背景复杂、目标非刚体形变、复杂运动等挑战性因素影响下容易出现模型偏移的问题, 导致跟踪失败. 与此同时, 像素级的显著性信息与运动先验信息作为人类视觉系统有效区分目标与背景、识别运动物体的重要信号, 并没有在主流目标跟踪算法中得到有效的集成利用. 针对上述问题, 提出目标的像素级概率性表征模型, 并且建立与之对应的像素级目标概率推断方法, 能够有效利用像素级的显著性与运动观测信息, 实现与主流的相关滤波跟踪算法的融合; 提出基于显著性的观测模型, 通过背景先验与提出的背景距离模型, 能够在背景复杂的情况下得到高辨识度的像素级图像观测; 利用目标与相机运动的连续性来计算目标和背景的运动模式, 并以此为基础建立基于运动估计的图像观测模型. 实验结果表明, 提出的目标表征模型与融合方法能够有效集成上述像素级图像观测信息, 提出的跟踪方法总体跟踪精度优于多种当下最先进的跟踪器, 对跟踪场景中的背景复杂、目标形变、平面内旋转等挑战性因素具有更好的鲁棒性. 相似文献
8.
An Adaptive Padding Correlation Filter With Group Feature Fusion for Robust Visual Tracking
下载免费PDF全文

Zihang Feng Liping Yan Yuanqing Xia Bo Xiao 《IEEE/CAA Journal of Automatica Sinica》2022,9(10):1845-1860
In recent visual tracking research, correlation filter (CF) based trackers become popular because of their high speed and considerable accuracy. Previous methods mainly work on the extension of features and the solution of the boundary effect to learn a better correlation filter. However, the related studies are insufficient. By exploring the potential of trackers in these two aspects, a novel adaptive padding correlation filter (APCF) with feature group fusion is proposed for robust visual tracking in this paper based on the popular context-aware tracking framework. In the tracker, three feature groups are fused by use of the weighted sum of the normalized response maps, to alleviate the risk of drift caused by the extreme change of single feature. Moreover, to improve the adaptive ability of padding for the filter training of different object shapes, the best padding is selected from the preset pool according to tracking precision over the whole video, where tracking precision is predicted according to the prediction model trained by use of the sequence features of the first several frames. The sequence features include three traditional features and eight newly constructed features. Extensive experiments demonstrate that the proposed tracker is superior to most state-of-the-art correlation filter based trackers and has a stable improvement compared to the basic trackers. 相似文献
9.
粒子退化现象是制约粒子滤波器性能的一个重要因素。为提高粒子采样质量和视频跟踪算法的精度,文中提出球粒子滤波视觉跟踪算法。将球状采样方式引入到粒子更新过程中较好地保证状态空间中粒子的有效性。与传统粒子滤波算法相比,这种采样方式能利用少量粒子实现分布多样性的同时,有效克服粒子退化现象。小球迭代运动可使粒子集朝较大后验概率分布区域移动。球粒子滤波算法不依赖系统状态模型特性可理想实现运动状态不规则的机动目标跟踪。实验结果表明,该算法有效提高粒子利用率,具有较好的跟踪精度。 相似文献
10.
Incremental Learning for Robust Visual Tracking 总被引:23,自引:0,他引:23
David A. Ross Jongwoo Lim Ruei-Sung Lin Ming-Hsuan Yang 《International Journal of Computer Vision》2008,77(1-3):125-141
Visual tracking, in essence, deals with non-stationary image streams that change over time. While most existing algorithms
are able to track objects well in controlled environments, they usually fail in the presence of significant variation of the
object’s appearance or surrounding illumination. One reason for such failures is that many algorithms employ fixed appearance
models of the target. Such models are trained using only appearance data available before tracking begins, which in practice
limits the range of appearances that are modeled, and ignores the large volume of information (such as shape changes or specific
lighting conditions) that becomes available during tracking. In this paper, we present a tracking method that incrementally
learns a low-dimensional subspace representation, efficiently adapting online to changes in the appearance of the target.
The model update, based on incremental algorithms for principal component analysis, includes two important features: a method
for correctly updating the sample mean, and a forgetting factor to ensure less modeling power is expended fitting older observations.
Both of these features contribute measurably to improving overall tracking performance. Numerous experiments demonstrate the
effectiveness of the proposed tracking algorithm in indoor and outdoor environments where the target objects undergo large
changes in pose, scale, and illumination. 相似文献
11.
针对目标跟踪中因背景混叠和遮挡等因素导致的目标丢失问题,提出了一种基于背景约束与卷积特征的目标跟踪方法(TBCCF)。对输入图像进行多特征融合并降维,增强目标特征判别性能的同时降低特征计算的复杂度;在滤波器训练过程中引入背景约束,使得滤波器更专注于目标响应,以提升抗干扰能力;通过设置记忆滤波器与峰值旁瓣比检测,判断目标是否丢失。若丢失,引入卷积特征滤波器进行重检测,实现目标的重捕获。在Visual Tracking Benchmark数据集50个复杂场景视频序列上的实验结果表明,所提算法总体精度和总体成功率优于现有的多数跟踪算法。 相似文献
12.
Cui Ying Guo Dongyan Shao Yanyan Wang Zhenhua Shen Chunhua Zhang Liyan Chen Shengyong 《International Journal of Computer Vision》2022,130(2):550-566
International Journal of Computer Vision - Visual tracking of generic objects is one of the fundamental but challenging problems in computer vision. Here, we propose a novel fully convolutional... 相似文献
13.
14.
针对深度卷积特征目标跟踪算法中特征提取计算量大、速度慢、难以在嵌入式平台上应用的问题,提出了一种基于PYNQ框架的目标跟踪方案,并将其部署在Zynq异构平台.首先设计基于深度卷积特征的目标跟踪算法;根据算法的特点进行软硬件划分,完成片上系统的构建;然后针对深度卷积特征提取的计算过程进行并行优化,导出加速IP核;最后在P... 相似文献
15.
16.
针对相关滤波类目标跟踪算法在目标出现遮挡、目标快速移动、复杂背景等情况下跟踪精度低的问题,提出了一种上下文感知自适应的相关滤波跟踪算法.首先,提取目标周围8个方向的背景样本为相关滤波器提供训练样本,然后利用粒子滤波对目标的运动状态进行估计,预测目标的运动方向.在训练滤波器时,给予目标运动方向上的背景样本更多的权重;接着,引入了一种新的模型更新判别依据APCE,只有当APCE值和响应最大值同时分别以一定比例大于各自的历史平均值时,才对模型进行更新;最后将上述算法与当前一些主流的跟踪算法在基准测试集OTB100上进行实验对比.实验结果表明,所提算法的成功率为0.647,精确度为0.866,与其中最优算法相比,分别提高了4.7%和7.3%.且上述算法具有较强的鲁棒性. 相似文献
17.
18.
19.
基于随机有限集理论的多伯努利滤波方法能够有效处理多目标跟踪中数目未知且时变的问题,但难以适应复杂环境下视频多目标跟踪中目标之间或背景等干扰问题,尤其是目标相互紧邻和被遮挡时,会导致跟踪精度下降,甚至目标漏跟。针对该问题,在多伯努利滤波框架下,深度分析目标的特征信息,引入抗干扰的卷积特征,提出基于卷积特征的多伯努利视频多目标跟踪算法,并在目标状态提取过程中,进一步提出模板更新,使用自适应学习速率进行更新,适应目标的变化,以解决目标紧邻相互干扰的问题。最后,引入粒子标记技术,实现对视频多目标的航迹跟踪。实验结果表明,提出算法能够有效区分复杂环境下的紧邻多目标,且具有较好的跟踪精度。 相似文献
20.
针对可变数目多目标视频跟踪,粒子滤波不能持续维持目标的多模态分布问题,本文提出一种混合粒子概率假设密度(PHD)滤波的多目标视频跟踪算法.该算法首先用K-means算法对粒子进行空间分布聚类,给各粒子群附加身份标签,使各粒子群分别对应混合粒子滤波的各分量,采用相互独立的各分量粒子滤波跟踪各目标,这样提高了目标状态估计的准确性,也能有效维持各目标的多模态分布.实验结果表明,该算法能有效处理新目标出现、合并、分离等多目标跟踪问题. 相似文献