首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unified fast time-stepping method for both fractional integral and derivative operators is proposed. The fractional operator is decomposed into a local part with memory length \(\varDelta T\) and a history part, where the local part is approximated by the direct convolution method and the history part is approximated by a fast memory-saving method. The fast method has \(O(n_0+\sum _{\ell }^L{q}_{\alpha }(N_{\ell }))\) active memory and \(O(n_0n_T+ (n_T-n_0)\sum _{\ell }^L{q}_{\alpha }(N_{\ell }))\) operations, where \(L=\log (n_T-n_0)\), \(n_0={\varDelta T}/\tau ,n_T=T/\tau \), \(\tau \) is the stepsize, T is the final time, and \({q}_{\alpha }{(N_{\ell })}\) is the number of quadrature points used in the truncated Laguerre–Gauss (LG) quadrature. The error bound of the present fast method is analyzed. It is shown that the error from the truncated LG quadrature is independent of the stepsize, and can be made arbitrarily small by choosing suitable parameters that are given explicitly. Numerical examples are presented to verify the effectiveness of the current fast method.  相似文献   

2.
3.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

4.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

5.
Network cost and fixed-degree characteristic for the graph are important factors to evaluate interconnection networks. In this paper, we propose hierarchical Petersen network (HPN) that is constructed in recursive and hierarchical structure based on a Petersen graph as a basic module. The degree of HPN(n) is 5, and HPN(n) has \(10^n\) nodes and \(2.5 \times 10^n\) edges. And we analyze its basic topological properties, routing algorithm, diameter, spanning tree, broadcasting algorithm and embedding. From the analysis, we prove that the diameter and network cost of HPN(n) are \(3\log _{10}N-1\) and \(15 \log _{10}N-1\), respectively, and it contains a spanning tree with the degree of 4. In addition, we propose link-disjoint one-to-all broadcasting algorithm and show that HPN(n) can be embedded into FP\(_k\) with expansion 1, dilation 2k and congestion 4. For most of the fixed-degree networks proposed, network cost and diameter require \(O(\sqrt{N})\) and the degree of the graph requires O(N). However, HPN(n) requires O(1) for the degree and \(O(\log _{10}N)\) for both diameter and network cost. As a result, the suggested interconnection network in this paper is superior to current fixed-degree and hierarchical networks in terms of network cost, diameter and the degree of the graph.  相似文献   

6.
We present some new analytical polygamy inequalities satisfied by the x-th power of convex-roof extended negativity of assistance with \(x\ge 2\) and \(x\le 0\) for multi-qubit generalized W-class states. Using Rényi-\(\alpha \) entropy (R\(\alpha \)E) with \(\alpha \in [(\sqrt{7}-1)/2, (\sqrt{13}-1)/2]\), we prove new monogamy and polygamy relations. We further show that the monogamy inequality also holds for the \(\mu \)th power of Rényi-\(\alpha \) entanglement. Moreover, we study two examples in multipartite higher-dimensional system for those new inequalities.  相似文献   

7.
Structural properties of u-constacyclic codes over the ring \({\mathbb {F}}_p+u{\mathbb {F}}_p\) are given, where p is an odd prime and \(u^2=1\). Under a special Gray map from \({\mathbb {F}}_p+u{\mathbb {F}}_p\) to \({\mathbb {F}}_p^2\), some new non-binary quantum codes are obtained by this class of constacyclic codes.  相似文献   

8.
In the typical model, a discrete-time coined quantum walk searching the 2D grid for a marked vertex achieves a success probability of \(O(1/\log N)\) in \(O(\sqrt{N \log N})\) steps, which with amplitude amplification yields an overall runtime of \(O(\sqrt{N} \log N)\). We show that making the quantum walk lackadaisical or lazy by adding a self-loop of weight 4 / N to each vertex speeds up the search, causing the success probability to reach a constant near 1 in \(O(\sqrt{N \log N})\) steps, thus yielding an \(O(\sqrt{\log N})\) improvement over the typical, loopless algorithm. This improved runtime matches the best known quantum algorithms for this search problem. Our results are based on numerical simulations since the algorithm is not an instance of the abstract search algorithm.  相似文献   

9.
An interval extension of successive matrix squaring (SMS) method for computing the weighted Moore–Penrose inverse \(A^{\dagger }_{MN}\) along with its rigorous error bounds is proposed for given full rank \(m \times n\) complex matrices A, where M and N be two Hermitian positive definite matrices of orders m and n, respectively. Starting with a suitably chosen complex interval matrix containing \(A^{\dagger }_{MN}\), this method generates a sequence of complex interval matrices each enclosing \(A^{\dagger }_{MN}\) and converging to it. A new method is developed for constructing initial complex interval matrix containing \(A^{\dagger }_{MN}\). Convergence theorems are established. The R-order convergence is shown to be equal to at least l, where \(l \ge 2\). A number of numerical examples are worked out to demonstrate its efficiency and effectiveness. Graphs are plotted to show variations of the number of iterations and computational times compared to matrix dimensions. It is observed that ISMS is more stable compared to SMS.  相似文献   

10.
We present an approach to single-shot high-fidelity preparation of an n-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produce single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two-qubit Bell state \(|\beta _{01}\rangle = (1/\sqrt{2})\left[ \, |01\rangle + |10\rangle \,\right] \) with an error probability \(\varepsilon \sim 10^{-6}\) (\(10^{-5}\)) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state \(|\overline{\beta }_{01}\rangle \).  相似文献   

11.
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.  相似文献   

12.
In this work, the effect of Hawking radiation on the quantum Fisher information (QFI) of Dirac particles is investigated in the background of a Schwarzschild black hole. Interestingly, it has been verified that the QFI with respect to the weight parameter \(\theta \) of a target state is always independent of the Hawking temperature T. This implies that if we encode the information on the weight parameter, then we can affirm that the corresponding accuracy of the parameter estimation will be immune to the Hawking effect. Besides, it reveals that the QFI with respect to the phase parameter \(\phi \) exhibits a decay behavior with the increase in the Hawking temperature T and converges to a nonzero value in the limit of infinite Hawking temperature T. Remarkably, it turns out that the function \(F_\phi \) on \(\theta =\pi \big /4\) symmetry was broken by the influence of the Hawking radiation. Finally, we generalize the case of a three-qubit system to a case of a N-qubit system, i.e., \(|\psi \rangle _{1,2,3,\ldots ,N} =(\cos \theta | 0 \rangle ^{\otimes N}+\sin \theta \mathrm{e}^{i\phi }| 1 \rangle ^{\otimes N})\) and obtain an interesting result: the number of particles in the initial state does not affect the QFI \(F_\theta \), nor the QFI \(F_\phi \). However, with the increasing number of particles located near the event horizon, \(F_\phi \) will be affected by Hawking radiation to a large extent, while \(F_\theta \) is still free from disturbance resulting from the Hawking effects.  相似文献   

13.
We provide a constant time schedulability test and priority assignment algorithm for an on-line multiprocessor server handling aperiodic tasks. The so called Dhall’s effect is avoided by dividing tasks in two priority classes based on their utilization: heavy and light. The improvement in this paper is due to assigning priority of light tasks based on slack—not on deadlines. We prove that if the load on the multiprocessor stays below \((3 - \sqrt{5} )/2 \approx 38.197\%\), the server can accept an incoming aperiodic task and guarantee that the deadlines of all accepted tasks will be met. This is better than the current state-of-the-art algorithm where the priorities of light tasks are based on deadlines (the corresponding bound is in that case 35.425%).The bound \((3 - \sqrt{5} )/2\) can be improved if the number of processors m is known. There is a formula for the sharp bound \(U_{\mathit{threshold}}(m) = \frac{3m - 2 - \sqrt{5m^{2} - 8m + 4}}{2(m - 1)}\), which converges to \((3 - \sqrt{5} )/2\) from above as m→∞. For m≥3, the bound is higher (i.e., better) than the corresponding sharp bound for the state-of-the-art algorithm where the priorities of light tasks are based on deadlines.A simulation study also indicates that when m>3 the best effort behavior of the priority assignment scheme suggested here is better than that of the traditional scheme where priorities are based on deadlines.  相似文献   

14.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

15.
This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:
$$\begin{aligned} \text {minimize} ~~&f_1(\mathbf{x}_1) + \cdots + f_N(\mathbf{x}_N)\\ \text {subject to}~~&A_1 \mathbf{x}_1 ~+ \cdots + A_N\mathbf{x}_N =c,\\&\mathbf{x}_1\in {\mathcal {X}}_1,~\ldots , ~\mathbf{x}_N\in {\mathcal {X}}_N, \end{aligned}$$
where \(N \ge 2\), \(f_i\) are convex functions, \(A_i\) are matrices, and \({\mathcal {X}}_i\) are feasible sets for variable \(\mathbf{x}_i\). Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices \(A_i\) are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices \(A_i\)). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that \(\Vert {\mathbf {x}}^{k+1} - {\mathbf {x}}^k\Vert _M^2\) converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
  相似文献   

16.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

17.
In this paper, we consider the on-line integrated production and outbound distribution scheduling problem to minimize the maximum delivery completion time. All jobs arrive over time, and each job and its processing time become known at its arrival time. The jobs are first processed on a single machine and then delivered by a vehicle to a single customer. The vehicle can deliver at most c jobs to the customer at a time. When preemption is allowed and c≥2, we can provide an on-line algorithm with the best competitive ratio \(\frac{\sqrt{5}+1}{2}\approx1.618\). When preemption is not allowed, we provide an on-line algorithm which has the best competitive ratio \(\frac{\sqrt{5}+1}{2}\approx1.618\) for the case c=1 and has an asymptotic competitive ratio \(\frac{\sqrt{5}+1}{2}\approx1.618\) for the case c≥2.  相似文献   

18.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

19.
This paper refines the main result of [1], where the limit \( - {e^{ - a}} - a{e^{ - a}}\left[ {1 - {e^{ - c\sqrt a }}} \right]\) was proved for the probability of encountering an accidental similarity between two parent examples without \(m = c\sqrt n \) counter examples if each parent example and counter example is described by a series of \(\sqrt n \) independent Bernoulli trials with success probability \(p = \sqrt {a/n} \). In this paper, we prove that the rate of convergence to the limit is proportional to \({n^{\frac{1}{2}}}\).  相似文献   

20.
We consider the neighbourhood load balancing problem. Given a network of processors and an arbitrary distribution of tasks over the network, the goal is to balance load by exchanging tasks between neighbours. In the continuous model, tasks can be arbitrarily divided and perfectly balanced state can always be reached. This is not possible in the discrete model where tasks are non-divisible. In this paper we consider the problem in a very general setting, where the tasks can have arbitrary weights and the nodes can have different speeds. Given a continuous load balancing algorithm that balances the load perfectly in \(T\) rounds, we convert the algorithm into a discrete version. This new algorithm is deterministic and balances the load in \(T\) rounds so that the difference between the average and the maximum load is at most \(2d\cdot w_{\max }\), where d is the maximum degree of the network and \(w_{\max }\) is the maximum weight of any task. For general graphs, these bounds are asymptotically lower compared to the previous results. The proposed conversion scheme can be applied to a wide class of continuous processes, including first and second order diffusion, dimension exchange, and random matching processes. For the case of identical tasks, we present a randomized version of our algorithm that balances the load up to a discrepancy of \(\mathscr {O}(\sqrt{d \log n})\) provided that the initial load on every node is large enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号