首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The average bit-error rate of transmit antenna selection combined with receive maximum-ratio combining is computed as a function of the transmit antenna update rate when using binary phase-shift keying in flat Rayleigh fading channels. This scheme achieves an order of diversity equal to the product of the number of transmit and receive antennas. Therefore, it can gain significant diversity benefits over traditional receive diversity schemes by distributing the antennas over the transmit and receive side  相似文献   

2.
瑞利衰落信道采用组合发射机SC/接收机 MRC的MQAM性能分析   总被引:4,自引:0,他引:4  
李光球  曹晓波 《电子学报》2003,31(7):1080-1082
日益增长的无线业务需求要求提高衰落信道上无线通信的频谱利用率.本文研究一种使用组合发射机SC/接收机MRC(SC/MRC)的MQAM方案,推导其在平坦瑞利衰落信道上的误符号率,分析无线信道时变特性对系统性能的影响.数值计算结果表明该组合空间分集方案可以通过调整发射天线和接收天线的数目来获得比传统接收机分集接收更大的分集增益.  相似文献   

3.
An asynchronous multicarrier (MC) direct-sequence (DS) code-division multiple-access (CDMA) scheme for the uplink of the mobile communication system operating in a frequency selective fading channel is analyzed. The bit error rate performance of the system with either equal gain combining or maximum-ratio combining is obtained. Numerical results indicate that the system performs better than that of the conventional DS-CDMA system and another MC-DS-CDMA system  相似文献   

4.
考虑多接收天线的第三代移动通信长期演进(LTE,long term evolution)上行通信链路,针对该链路中的Wi-Fi同频干扰,提出了一种新的多天线合并方法:干扰重建抑制合并(IRRC,interference reconstruction rejectioncombining)。首先估计接收信号的协方差矩阵,并将其作为干扰信号协方差矩阵的近似值;再应用干扰抑制合并(IRC,interference rejection combining)恢复期望信号;然后从接收信号中剔除期望信号,得到重建的干扰信号;最后,再次估计干扰信号的协方差矩阵,并进行干扰抑制合并。多径衰落信道中的仿真结果表明:考虑一发两收、正交相移键控(QPSK,quadrature phase shift keying)调制、0dB干信比的LTE上行信号,与传统的IRC方法相比,最小均方误差准则下应用IRRC方法约有2dB的发射功率改善。  相似文献   

5.
The mobile communication channel is very hostile to a DS-CDMA signal and therefore effective techniques are needed to enhance system performance and capacity. Further, since DS-CDMA capacity and performance is limited by the uplink, ways to improve the uplink performance is needed. By implementing antenna arrays, diversity schemes or a combination of antenna arrays and diversity techniques, the uplink performance can be improved substantially. In this study we consider a single cell with a base station at the center with mobiles uniformly distributed around it. As channel model a Nakagami distributed path gain is assumed. This model was chosen for flexibility (e.g., Rayleigh and Rice channel models can be approximated) and also since empirical data suggests that path fading statistics are adequately described by this distribution. At the receiver an array of M antennas is used to discriminate between the users based on their spatial diversity. The fading process at each of the antenna elements is statistically dependent and further improvements can be realized by making use of the independent fading characteristics of the received signal. To make use of this statistical independent information, the performance of a P branch Maximum Ratio Combining (MRC) receiver is also considered. We further investigate the performance of a combination of P clusters of M antennas separated by the coherence bandwidth of the channel, thereby making use of both forms of spatial diversity. A comparison of the three schemes (antenna arrays, MRC diversity and a combination of antenna arrays and MRC diversity) under equal complexity conditions are made under multipath fading conditions. It is shown that the performance and capacity of a MRC diversity receiver outperforms the other two methods when perfect power control is assumed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In this paper, we examine the impact of antenna correlation on transmit antenna selection with receive maximal ratio combining (TAS/MRC) in multiple‐input multiple‐output multiuser underlay cognitive radio network (MIMO‐MCN) over a Nakagami‐m fading environment. The secondary network under consideration consists of a single source and M destinations equipped with multiple correlated antennas at each node. The primary network composed of L primary users, each of which is equipped with multiple correlated antennas. For the considered underlay spectrum sharing paradigm, the transmission power of the proposed secondary system is limited by the peak interference limit on the primary network and the maximum transmission power at the secondary network. In particular, we derive exact closed‐form expressions for the outage probability and average symbol error rate of the proposed secondary system. To gain further insights, simple asymptotic closed‐form expressions for the outage probability and symbol error rate are provided to obtain the achievable diversity order and coding gain of the system. In addition, the impact of antenna correlation on the secondary user ergodic capacity has been investigated by deriving closed‐form expressions for the secondary user capacity. The derived analytical formulas herein are supported by numerical and simulation results to clarify the main contributions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In maximal ratio transmission, the base station adjusts the complex weights of its transmit antennas to compensate for downlink channel gains in order to produce signal reinforcement-diversity-at a desired mobile that may have only a single antenna. To make the method adaptive, the complex weights are obtained from the instantaneous complex gains in the uplink; however, delay and frequency offset between uplink measurements and downlink transmission reduce the correlation between the gains in the two directions. This paper provides an analysis of the effects of gain decorrelation and of the number of antennas, and an assessment of the effect of fading when the method supports multiple users. It demonstrates that large reductions in downlink transmit power are achievable, and it examines simple transmission models to see how well they support the technique  相似文献   

8.
The active integrated antenna (AIA) concept has been applied to design a broadband receiver front-end. A design procedure for active broadband patch antennas based on resistive equalization is presented. The use of the AIA has allowed the design of efficient RF front-ends by increasing its effective gain, noise figure, and merit . In addition to improving the classical parameters, the resistive equalization technique allows enlarging the bandwidths of the active antenna parameters versus the corresponding ones in passive antennas. A receiving patch antenna (with one amplifying stage) with a measured noise figure lower than 0.6 dB in a bandwidth over 38% and an effective gain improvement of 13 dB over the corresponding passive antenna has been achieved. The -parameter has also been measured for both the active and passive antenna, resulting in a relative planar of 16 dB/K, with a ripple of 0.5 dB, over a 30% bandwidth for the active antenna versus a of 22 dB/K for a typical front-end with a passive antenna over 20% bandwidth.  相似文献   

9.
Switched diversity with feedback for DPSK mobile radio systems   总被引:1,自引:0,他引:1  
Switched diversity with feedback for differential phase shift keying (DPSK) mobile radio is discussed. The technique uses multiple transmit antennas at the base station but only one receive antenna at the mobile. The base station transmits with one antenna that is switched when the mobile informs the base station that the received signal has fallen below a fixed level. The implementation of switched diversity with feedback in a digital mobile radio system is first described, and then the bit error rate performance of the system is analyzed with fading as a function of several design parameters. Implementation of the system is shown to be relatively simple, yet the system is shown to reduce substantially the required received Eb/N0for a given error rate at the mobile as compared to a system without diversity. For example, with five transmit antennas the required received Eb/N0for a 10-3bit error rate is 13 dB less. The system capacity and availability assuming 32 kb/s audio and flat fading is then discussed. It is shown that with three-corner base station diversity and four transmit antennas at each base station, 126 two-way circuits per cell can be used in a fully loaded 40-MHz bandwidth system with a ten-percent probability that the error rate exceeds 10-3.  相似文献   

10.
In this paper, we study the ability of transmit diversity to provide diversity benefit to a receiver in a Rayleigh fading environment. With transmit diversity, multiple antennas transmit delayed versions of a signal to create frequency-selective fading at a single antenna at the receiver, which uses equalization to obtain diversity gain against fading. We use Monte Carlo simulation to study transmit diversity for the case of independent Rayleigh fading from each transmit antenna to the receive antenna and maximum likelihood sequence estimation for equalization at the receiver. Our results show that transmit diversity with M transmit antennas provides a diversity gain within 0.1 dB of that with M receive antennas for any number of antennas. Thus, we can obtain the same diversity benefit at the remotes and base stations using multiple base-station antennas only  相似文献   

11.
In this paper, we study the performance of a bandwidth efficient space–frequency turbo encoding scheme over wideband channels. Results are presented for simulated wideband MIMO channels consisting of two transmit antennas and up to two receive antennas. In addition, wideband channel measurements undertaken with practical multi‐element antenna structures at both the access point (AP) and mobile terminal (MT) are presented. Analysis is in terms of channel capacity, 10% channel outage capacity and space–frequency iterative decoding for an lEEE802.11a physical layer complaint modem. It is shown when operating with a spectral efficiency of 1.2 bits/s/Hz, the iterative decoded space–time codes comes within approximately 4.7 dB of 10% outage capacity over Rayleigh fading wideband channels with two transmit and two receive antennas. Over measured channels the iterative decoding scheme performs within 7.7 dB 10% of outage capacity. Losses due to channel state information estimation are also investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Much of the performance analysis on multiuser receivers for direct-sequence code-division multiple-access (CDMA) systems is focused on worst case near-far scenarios. The user capacity of power-controlled networks with multiuser receivers are less well-understood. Tse and Hanly (see ibid., vol.45, p.541-657, 1999) have shown that under some conditions, the user capacity of an uplink power-controlled CDMA cell for several important linear receivers can be very simply characterized via a notion of effective bandwidth. We show that these results extend to the case of antenna arrays. We consider a CDMA system consisting of users transmitting to an antenna array with a multiuser receiver, and obtain the limiting signal-to-interference (SIR) performance in a large system using random spreading sequences. Using this result, we show that the SIR requirements of all the users can be met if and only if the sum of the effective bandwidths of the users is less than the total number of degrees of freedom in the system. The effective bandwidth of a user depends only on its own requirement. Our results show that the total number of degrees of freedom of the whole system is the product of the spreading gain and the number of antennas. In the case when the fading distributions to the antennas are identical, we show that a curious phenomenon of “resource pooling” arises: the multiantenna system behaves like a system with only one antenna but with the processing gain the product of the processing gain of the original system and the number of antennas, and the received power of each user the sum of the received powers at the individual antennas  相似文献   

13.
A Unified Capacity Analysis for Wireless Systems With Joint Multiuser Scheduling and Antenna Diversity in Nakagami Fading Channels In this paper, we present a cross-layer analytical framework to jointly investigate antenna diversity and multiuser scheduling under the generalized Nakagami fading channels. We derive a unified capacity formula for the multiuser scheduling system with different multiple-input multiple-output antenna schemes, including: 1) selective transmission/selective combining (ST/SC); (2) maximum ratio transmission/maximum ratio combining (MRT/MRC); 3) ST/MRC; and 4) space–time block codes (STBC). Our analytical results lead to the following four observations regarding the interplay of multiuser scheduling and antenna diversity. First, the higher the Nakagami fading parameter, the lower the multiuser diversity gain for all the considered antenna schemes. Second, from the standpoint of multiuser scheduling, the multiple antennas with the ST/SC method can be viewed as virtual users to amplify multiuser diversity order. Third, the boosted array gain of the MRT/MRC scheme can compensate the detrimental impact of the reduced amount of fading gain on multiuser scheduling, thereby resulting in greater capacity than the ST/SC method. Last, employing the STBC scheme together with multiuser diversity may cause capacity loss due to the reduced amount of fading gain, but without the supplement of array gain.  相似文献   

14.
A novel broadband planar antenna based on the classic Yagi-Uda dipole array is presented. This "quasi-Yagi" antenna achieves a measured 48% bandwidth for VSWR <2, better than 12 dB front-to-back ratio, smaller than -15 dB cross polarization, 3-5 dB absolute gain and a nominal efficiency of 93% across the operating bandwidth. Finite-difference time-domain simulation is used for optimization of the antenna and the results agree very well with measurements. Additionally, a gain-enhanced design is presented, where higher gain has been achieved at the cost of reduced bandwidth. These quasi-Yagi antennas are realized on a high dielectric constant substrate and are completely compatible with microstrip circuitry and solid-state devices. The excellent radiation properties of this antenna make it ideal as either a stand-alone antenna with a broad pattern or as an array element. The antenna should find wide applications in wireless communication systems, power combining, phased arrays and active arrays, as well as millimeter-wave imaging arrays.  相似文献   

15.
This paper analyzes the achievable sum‐rate of correlated two‐antenna multiple‐input multiple‐output (MIMO) uplink channels. Most of previous works have considered the case when a single user has multiple transmit antennas (i.e. multi‐antenna single‐user scenario). This paper considers the case when two‐antenna MIMO uplink channels comprise two users with a single transmit antenna (i.e. single‐antenna two‐user scenario). The analytic and simulation results show that the achievable sum‐rate of correlated single‐antenna two‐user MIMO uplink channels highly depends on the angle difference between the receive correlation coefficients of two users. It is also shown that the achievable sum‐rate of correlated single‐antenna two‐user MIMO uplink channels is larger than that of correlated two‐antenna single‐user MIMO uplink channels and can even be larger than that of independent and identically distributed Rayleigh two‐antenna MIMO uplink channels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Low density parity check (LDPC) codes have shown exceptionally good performance for single antenna systems over a wide class of channels. LDPC when implemented with a single input multiple output system with maximum ratio combining is optimum from the standpoint of maximising signal-to-noise ratio at combiner output without the presence of interferer. Optimum combining outperforms maximal ratio combining (MRC) in the presence of interferer(s). In this article, the performance of the LDPC codes with multiple receiver antennas with optimum combining in the presence of single interferer is investigated. The simulation results showed that LDPC codes of irregular construction are able to give high coding and diversity gain with optimum combining. The proposed LDPC optimum combined (LDPC–OC) system in Rayleigh fading channel in the presence of a single interferer improves the signal to interferer plus noise ratio by 2.62 dB with four receiver antennas and by 1.98 dB when the number of receiver antennas is three.  相似文献   

17.
杨放  卫铭斐  王民  王纯  周军妮 《电信科学》2015,31(11):72-76
提出了一种十字形缝隙加载的小型宽带及圆极化微带贴片天线的设计方法。该天线通过在方形贴片上加载一个大尺寸的十字形缝隙实现天线的尺寸缩减,介质基片采用由FR4和空气层组成的层叠结构,在缝隙中嵌入L型枝节,只需通过调整枝节上同轴线馈电点的位置来获得圆极化或宽带阻抗匹配。ANSYS HFSS仿真分析表明,天线的圆极化带宽(AR≤3 dB)为1.7%,阻抗带宽(VSWR≤2)为5.8%,天线在宽带范围内具有稳定的增益,峰值增益为7.8 dB,同时贴片面积缩减了52.3%。改变馈电点的位置可调节两个谐振频率使天线阻抗带宽达到9.4%,比传统的微带贴片天线阻抗带宽提高了114%。  相似文献   

18.
Nakagami衰落信道上组合SC/MRC的性能分析   总被引:1,自引:0,他引:1  
李光球 《电波科学学报》2007,22(2):187-190,250
研究Nakagami衰落信道上组合发射机选择合并(SC)/接收机最大比合并(MRC)天线分集系统的性能.使用矩生成函数方法,推导采用组合SC/MRC天线分集和相干检测的MPSK(M进制相移键控)、MQAM(M进制正交幅度调制)、MPAM(M进制脉冲幅度调制)、BFSK(二进制频移键控)、最小相关BFSK(BFSKmin)、差分编码BPSK(DE-BPSK)和预编码MSK(最小频移键控)等几种M进制数字调制方式在Nakagami衰落信道上的误符号率性能,获得了M进制数字调制系统误符号率性能的精确数学表达式.数值计算结果阐明了发射天线和接收天线数目以及衰落参数对数字调制系统误符号率性能的影响.  相似文献   

19.
This paper deals with the design of broadband active microstrip antennas where the amplifier is integrated with the radiator. Theoretically sound definitions for gain and noise figure of the active antenna are introduced, and their relationships with the definitions for the composing circuit and radiator parts are explained. A sequential design procedure is presented that allows the straightforward and optimal design of transmitting and receiving antennas with multiple active stages, taking into account input and output matching, the gain-versus-frequency curve as well as the noise performance. The theoretical concepts are illustrated with two examples: one of a transmitting active antenna and one of a receiving antenna. The former one is a two-stage design that achieves nearly 25% of bandwidth with regard to gain and matching and 24 dB gain improvement as compared to the matched passive antenna. The second one is a receiving antenna (one stage) with a measured noise figure of 1.2 dB in a bandwidth of over 17% and a gain improvement of 11.9 dB over the corresponding passive antenna. Finally co- and cross-polar radiation patterns in E- and H-plane prove that the antennas also have favorable radiation characteristics in a wide bandwidth (at least 18%)  相似文献   

20.
In this paper, the uplink of an asynchronous multi-carrier direct-sequence code-division multiple-access (MC-DS-CDMA) system with multiple antennas at both the transmitter and the receiver is considered. We analyze the system performance over a spatially correlated Rayleigh fading channel with multiple-access interference (MAI), and evaluate the antenna array performance with joint fading reduction and MAI suppression. Assuming perfect channel knowledge available at the transmitter, maximal ratio transmission is employed to weight the transmitted signal optimally in terms of combating signal fading. At the receiver, adaptive beamforming reception is adopted to both suppress MAI and combat the fading. Note that while correlations among the fades of the antennas in the receive array reduce the diversity gain against fading, the array still has the capability for interference suppression. We examine the effect of varying the number of transmit and receive antennas on both the diversity gain and the interference suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号