首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The models for the local approach to cleavage fracture and to ductile tearing include the effects of specimen geometry and loading situation on the damage development. Thus, these concepts can be used to predict fracture toughness and tearing resistance curves for different sizes of specimens or structures, based on an analysis of tests with small, simple specimens. This advantage is especially valuable if only small pieces of material are available for testing which do not allow for standard fracture specimens. The paper outlines the basic ideas of the Beremin concept for the fracture process in brittle-to-ductile transition regime and of the modified Gurson model for ductile fracture in the upper shelf. A systematic study for the brittle-to-ductile transition regime showed that the Beremin model has to be modified to take into account the effect plastic strain has on the fracture process. For ductile fracture, it was demonstrated that by testing and modeling a smooth bar and a fracture mechanics specimen, one set of material parameters may be found which can be subsequently applied to other structures and, hence, used to extend the material data base.  相似文献   

2.
The first pressurized-thermal-shock test of a 148 mm thick steel pressure vessel with a 1 m long flaw was performed to investigate fracture behavior of a vessel under conditions relevant to a flawed nuclear reactor pressure vessel during an overcooling accident. The objectives were to observe crack arrest and stability on the ductile upper shelf and the effects of warm prestressing on crack initiation. Three coordinated pressure and thermal transients were imposed on the vessel, which was preheated to 290°C. Two episodes of crack propagation and arrest occurred. The thermal transients were induced by coolant at −29 to 15°C. Pressure transients were as high as 94.4 MPa. The experimental objectives were attained. The inhibiting effects of warm prestressing were definitely demonstrated. Crack propagation was nearly pure cleavage, and arrest at 30 K above the onset of the Charpy upper-shelf was experienced in a positive K1 gradient and with K1 = 300 MPam. Fracture-mechanics analysis of brittle fracture based on small-specimen toughness measurements was reasonably accurate. Flaw evaluation by procedures of the ASME Boiler and Pressure Vessel Code conservatively predicted vessel failure, which did not occur. No ductile tearing occurred after each crack arrest, although some stable tearing had been predicted on the basis of tearing resistance data.  相似文献   

3.
In recent years, several experimental programmes on large-scale specimens have been organized to evaluate the capabilities of the fracture mechanics concepts employed in structural integrity assessment of pressurized water reactor pressure vessels. During the first spinning cylinder test, a geometry effect was revealed experimentally showing the difficulties of transferring toughness data from small-scale to large-scale specimens. An original analysis of this test, by means of a local approach to fracture, is presented in this paper. Both compact tension specimen and spinning cylinder fracture behaviour were computed using a continuum damage mechanics model developed at EDF. We confirmed by numerical analysis that the cylinder's resistance to ductile tearing was considerably larger than in small-scale fracture mechanics specimen tests, about 50%. The final crack growth predicted by the model was close to the experimental value. Discrepancies in J R curves seemed to be due to an effect of stress triaxiality and plastic zone evolution. The geometry effect inducing differences in resistance to ductile tearing of the material involved in the specimens can be investigated and explained using a local approach to fracture methodology.  相似文献   

4.
A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter Gfr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of Gfr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that Gfr controls the fields in the vicinity near the crack tip.  相似文献   

5.
The primary heat transport system of 500 MWe Indian PHWR comprises of straight pipes, elbows and headers. A study was conducted to qualify piping system for leak before break. R-6 method was used to assess integrity of system for leakage size crack (LSC), the margins on crack initiation load and unstable crack growth loads. Option 2 (material specific failure assessment diagram), Category 3 (ductile tearing) analysis was used for straight pipes, elbows and header. In order to enhance the confidence in the analytical results, detailed sensitivity analysis was also performed. For sensitivity analysis, variation in material properties, LSC was considered. The effect of variation in temperature on material properties was also considered. Tensile and fracture properties used for base and weld material data were generated from pipe material obtained from 220 MWe Nuclear Power Plant, under construction.  相似文献   

6.
It is well known that the tearing resistance curve J–Δa is not a material property. A recent approach, based on an energetic critical parameter to model ductile tearing propagation, is used to model 3D effects. The approach considered in this work aims to estimate the dissipated energy in the fracture process during ductile tearing represented by an intrinsic parameter Gfr. A fracture criterion, which accounts for the crack extension length, is defined and lies on a critical energy release rate, noted Gc, which is compared to Gfr. Previously, this parameter was obtained from a numerical local energy release rate, which handicaps the application field of the approach: a fine mesh for the whole propagation area was needed and the criterion allowed only to model 1D propagation. A new manner to estimate Gc is then proposed in this article, based on the J plastic part variation, which allows to model 2D propagation by defining a local criterion. This new calculation method is validated on a CT specimen made in Tu52b ferritic steel, by comparing the results obtained from the two methods of Gc calculation. Then, the 2D crack growth case is studied, by modelling the propagation in a ring, loaded in compression. It is shown that a 3D effect, such as tunnel effect, could be successfully represented with this approach.  相似文献   

7.
J-integral fracture toughness tests were performed on full scale pipe specimens to assess the fracture safety performance of two reactor piping alloys. The two alloys investigated were ASTM A106 Grade B carbon steel and circumferentially welded Type 304 stainless steel.The full scale pipe fracture tests were performed on 1.2 m long, circumferentially cracked pipes loaded in four-point bending on a variably compliant test bed. Results of the experiments were analyzed using the limit load approach currently being considered for inclusion in Section XI of the ASME Code. The results were also evaluated using two tearing instability approaches. One approach assumed elastic-perfectly plastic material behavior and the other accounted for material hardening by requiring actual load and displacement data.The limit load analysis provided a good prediction of the maximum load carrying capacity of the pipe specimens in most cases. The results were especially good for the ASTM A106 steel pipes when the materials property data was used to calculate the flow stress. The J-integral tearing instability analysis was shown to accurately describe the ductile tearing instability behavior of the ASTM A106 steel pipe providing material hardening was taken into account.  相似文献   

8.
Cleavage fracture of reactor pressure vessel steels in the upper ductile to brittle transition region generally occurs with prior significant ductile crack growth. For low upper shelf materials and using PreCracked Charpy v-notch (PCCv) specimens that can be obtained from conventional surveillance programs, the effect of prior crack growth could be particularly important. In practice, the shape of the Master Curve and the failure distribution could be affected by ductile crack growth. To quantify the effect in practical applications, the effect of prior ductile on cleavage is evaluated on PCCv specimen.The methodology use finite element calculations to grow a ductile crack and infer the brittle failure probability using the local approach to fracture. It is found that for very low upper shelf toughness materials, ductile crack growth enhances the failure probability, induces a steeper failure distribution and affects the shape of the Master Curve. However, for low toughness materials, the enhanced failure probability due to crack growth is compensated by loss of constraint.  相似文献   

9.
Fracture toughness tests were performed in the transition region for ASTM A508 Class 3 steel using about 160 specimens. The KJ-values which are converted from Jc of the smaller specimens indicated a wide scatter ranging from below the KIc-value to much higher toughness. The fast brittle fracture behavior in the transition regime can be divided into two regions: (1) the region where fracture occurs on a blunting line (Region I) and (2) the region where fracture occurs on an R-curve (Region II). The scatter of the KJ-values in each region is caused by the amount of crack extension contained in the specimens. The methods to obtain the fracture toughness equivalent to the KIc from the KJ values were also presented.In the upper shelf region, the ductile fracture behavior of A508 Class 3 base metal and weldments was investigated. The 25% side grooved specimen was recommended for measuring the resistance against ductile crack growth. The weld heat affected zone (HAZ) has comparatively higher tearing modulus, whereas the weld metal shows the lowest one.  相似文献   

10.
An investigation on ductile crack initiation in structural steel has been made, based on the concept of Gurson's yield function for porous material. First, the condition of ductile crack initiation in the uniform stress field has been investigated. The condition of ductile crack initiation under various stress triaxiality obtained from the tests on axisymmetric notched tensile specimens is well expressed by the condition of constant void volume fraction analytically obtained from Gurson's model. This result means that the condition of constant void volume fraction may be used as the criterion of ductile crack initiation. Secondly, the behavior of void growth and ductile crack initiation in the area near the notch tip under mode I and mode II loading has been investigated. Under mode I loading, the increase in void volume fraction around the notch with an increase in applied load agrees well with the behavior of porous material predicted by the finite element analysis based on Gurson's yield function, and the ductile crack initiation can be predicted by the concept of critical void volume fraction as in the case of uniform stress-strain field given above. The same criterion is not applicable to the crack initiation under mode II loading and further study is needed.  相似文献   

11.
Recent elastodynamic fracture analysis results are summarized from Heavy-Section Steel Technology (HSST) studies in two major areas that related to assessing nuclear reactor pressure vessel integrity under pressurized-thermal-shock (PTS) conditions. These areas are crack run-arrest behavior in wide plates under nonisothermal conditions and fracture behavior of a thick-wall vessel under combined thermal and pressure loadings.The WP-1 series of HSST wide-plate crack-arrest tests are being performed at the National Bureau of Standards (NBS), Gaithersburg, MD, using specimens from HSST Plate 13A of A533 grade B class 1 steel. The six tests in the WP-1 series are aimed at providing crack-arrest data at temperatures up to and above that corresponding to the onset of the Charpy upper-shelf, as well as providing information on dynamic fracture (run and arrest) processes for use in evaluating improved fracture analysis methods. Elastodynamic analyses have been completed for the actual test conditions of the four tests, WP-1.1 through WP-1.4, conducted thus far in the WP-1 series. In this paper, the computed results are compared with data for crackline strain-time response, crack-propagation speed, arrest location and post-arrest tearing. The paper includes a summary of the arrest toughness calculations compiled in the four tests at temperatures that range from transition to upper-shelf values for the wide-plate material.These same elastodynamic fracture analysis techniques have been applied to the analysis of the first pressurized-thermal-shock experiment (PTSE-1) performed at ORNL. The experiment addressed warm-prestressing phenomena, crack propagation from brittle to ductile regions, and crack stabilization in ductile regions. Test and analysis results are summarized in the paper.  相似文献   

12.
The report summarizes some of the methods which are currently used for assessing the fracture toughness of materials under elastic and elastic-plastic conditions. The main parameters which are considered are (1) plane strain fracture toughness (KIc), (2) equivalent energy (KIcd), (3) contour integral (J) and (4) crack opening displacement (COD). Gross strain crack tolerance and stress concentration methods are also discussed.It is concluded that of these parameters, the contour integral and the crack opening displacement have most potential for future development. These two parameters are shown to be equivalent, however, at the present stage of development the COD concept has several advantages over the J concept. Firstly, the COD concept is able to take into account, secondary stresses, such as welding residual stresses. Because these stresses are in equilibrium, they do not appear in energy measurements to evaluate J. Secondly, the COD value is a physical measure of the crack tip conditions which includes the effect of stress state and thickness. It is, therefore, possible to measure and calculate COD levels for cracks in real structures. It is not possible to evaluate J for real structures since J methods are appropriate only to in-plane problems. This also means that partial wall (thumbnail) flaws are better characterized by the COD concept.The COD concept has been developed to a stage where it is possible to estimate the significance of flaws in welded structures provided the toughness of the material and the acting stresses or strains are known. This development is described and the method used to analyze tests on model pressure vessels with 6″ thick walls. A comparison is made with other methods, and it is concluded that although the COD analysis gives conservative estimates of the flaw size to cause failure, further work is necessary to be able to predict vessel burst conditions when failure is preceded by extensive plasticity and stable ductile tearing. A simple nomogram to determine COD levels to ensure leak before break conditions is also developed.  相似文献   

13.
The effect of biaxial loading on the ductile behaviour of a through-wall crack in a ferritic steel structure under contained yield is of particular interest to the structural integrity argument for reactor pressure vessels. This results from the fact that there are many instances in practice (for example a crack in a circumferential weld), where a significant applied stress is present in the direction parallel to the crack as well as in the perpendicular direction. Two large plate ductile tearing tests have been performed on centre through-crack specimens (75 mm by 2 m by 2 m) manufactured from a ferritic steel. The first test specimen was loaded in uniaxial tension and the second test specimen was loaded biaxially. This paper presents experimental details and results of the two plate tests and describes the analysis work undertaken to interpret the experiments satisfactorily.  相似文献   

14.
Recent results are summarized from HSST studies in three major areas that relate to assessing nuclear reactor pressure vessel integrity under pressurized-thermal-shock (PTS) conditions. These areas are irradiation effects on the fracture properties of stainless steel cladding, crack run-arrest behavior under non-isothermal conditions, and fracture behavior of a thick-wall vessel under combined thermal and pressure loadings.Since a layer of tough stainless steel weld overlay cladding on the interior of a pressure vessel could assist in limiting surface crack extension under PTS conditions, its resistance to radiation embrittlement was examined. A stainless steel overlay cladding, applied by a submerged arc, single-wire, oscillating-electrode method, was irradiated to 2 × 1023 neutrons/m2 (> 1 MeV) at 288°C. Yield strength increases up to 27% and a slight increase in ductility were observed. Charpy V-Notch data showed a ductile-to-brittle transition behavior caused by temperature-dependent failure of the 8-ferrite phase. The type 308 cladding, microstructurally typical of that in reactor pressure vessels, showed very little degradation in either upper-shelf energy or transition temperature due to irradiation.Crack-arrest behavior of A533 grade B class 1 steel was examined for temperatures extending above the onset of Charpy upper-shelf. Crack-arrest experiments that use wide-plate specimens have shown crack arrest occurring prior to transition to tearing or tensile instability. High values of crack-arrest toughness have been recorded (static values above 400 MPa that are well above the maximum value that safety assessment criteria assume such materials can exhibit.A validation experiment was performed by exposing an intentionally flawed HSST intermediate test vessel to combined pressure and thermal transients. The experiment addressed warm-prestressing phenomena, crack propagation from brittle to ductile regions, and crack stabilization in ductile regions. Test and analysis results are summarized.  相似文献   

15.
A complete understanding of the fracture mechanisms of steel in the ductile/brittle transition region requires analysis not only of crack initiation, but also of crack propagation. This paper reviews micrographic and fractographic experiments that give insight into both phenomena, and suggests a frame-work through which both may be related.Unstable cleavage crack initiation can occur after some blunting of the original fatigue precrack or after some stable crack growth. In either event, instability appears to be triggered by the fracture of a brittle micro-constituent ahead of the precrack. The large scatter in reported KIc values within the transition region reflects the size distribution and relative scarcity of these “trigger” particles.While a large number of models have attempted to correlate toughness in the ductile/brittle transition regime to events occurring ahead of the crack tip, surprisingly little attention has been paid to events occurring behind the crack front. Fractographic evidence as well as metallographic sectioning of arrested cracks show that the mechanism of rapid crack propagation by cleavage is affected strongly by partial crack-plane deflection which leaves unbroken ligaments in its wake. The tearing of these ligaments by dimple-rupture is the dominant energy-absorbing mechanism. Etch-pit experiments using an Fe-Si alloy show that the crack-tip stress intensity based on plastic zone size is extremely low. It is suggested that the mechanism of crack arrest should be modeled using a sharp crack which is restrained by a distribution of discrete pinching forces along its faces. The same model is applied to crack initiation.  相似文献   

16.
In this paper, the finite element method (FEM) based on GTN model is used to investigate the ductile crack growth behavior in single edge-notched bend (SENB) specimens of a dissimilar metal welded joint (DMWJ) composed of four materials in the primary systems of nuclear power plants. The Ja resistance curves, crack growth paths and local stress-strain distributions in front of crack tips are calculated for eight initial cracks with different locations in the DMWJ and four cracks in the four homogenous materials. The results show that the initial cracks with different locations in the DMWJ have different crack growth resistances and growth paths. When the initial crack lies in the centers of the weld Alloy182 and buttering Alloy82, the crack-tip plastic and damage zones are symmetrical, and the crack grow path is nearly straight along the initial crack plane. But for the interface cracks between materials and near interface cracks, the crack-tip plastic and damage zones are asymmetric, and the crack growth path has significant deviation phenomenon. The crack growth tends to deviate into the material whose yield stress is lower between the two materials on both sides of the interface. The different initial crack locations and mismatches in yield stress and work hardening between different materials in the DMWJ affect the local stress triaxiality and plastic strain distributions in front of crack tips, and lead to different ductile crack growth resistances and growth paths. For the accurate integrity assessment for the DMWJ, the fracture toughness data and resistance curves for the initial cracks with different locations in the DMWJ need to be obtained.  相似文献   

17.
C–Mn steels and associated welds can be susceptible to dynamic strain aging (DSA). In this case, fracture toughness passes through a minimum when the temperature increases from 20 to 300 °C. Since Charpy V-Notch data are not affected by the DSA phenomenon, the method for predicting the evolution of J0.2 and dJ/da in the temperature domain where DSA occurs is still an open question. The purpose of the present study is the assessment of this decrease in fracture toughness using a local approach method. The results of JR tearing resistance tests, characterized by crack initiation resistance J0.2 and tearing modulus dJ/da relative to a base metal (A48 French standard steel) and manual metal arc deposited metals are presented and discussed. The local approach determination of J0.2 was performed using the Rice and Tracey model. Comparisons between experimental results and the results of local approach modelling indicate that both J0.2 and dJ/da decreases with DSA can be correctly predicted.  相似文献   

18.
Abstract

The design testing of packages for radioactive materials considers normal operating conditions and accident conditions. A mechanical test, especially under accident conditions, must include the safety assessment of possibly undetected material defects. BAM has developed improved assessment methods, using fracture mechanics, for cracks in the most highly stressed regions of cubic containers made of ductile cast iron. Postulated surface cracks in the centre of the container walls and grooves are investigated numerically. In the static case relations between the crack tip parameters (stress intensity factor or the J integral, respectively), stress load, crack depth, container geometry and material behaviour are derived. In the dynamic case it can be shown by numerical simulations of the drop test of containers onto different targets, even without shock absorbers, that the dynamic crack tip parameter may be estimated by static formulae with the dynamic stress inserted in the intact component. This somewhat surprising result can be explained by the fact that the drop event happens over milliseconds. That is slow enough for the crack to behave quasistatically although the crack is loaded with a dynamic, i.e. time-dependent, stress. Based on these calculations, the critical crack depth is given as a function of the stress, the material quality (defined by the fracture toughness) and the wall thickness for surface cracks in the centre of walls as well as in grooves of a cubic container.  相似文献   

19.
This paper contains a critical examination of the present ASTM E813-81 JIc test standard and proposed modifications of this standard. It is suggested that a value J corresponding to a ductile tearing, Δa1, of 0.2 mm be regarded as an engineering approximation of initiation fracture toughness. This amount of ductile tearing is obtained by intersecting the initial part of the J-Δa curve with an intercept line parallel to the blunting line. An improved blunting line has been derived by accounting for the material's strain hardening properties. Finally, the application of the modified JIc procedure will be demonstrated using several materials.  相似文献   

20.
The influence of hydrogen content and temperature on the fracture toughness of a Zircaloy-4 commercial alloy was studied in this work. Toughness was measured on CT specimens obtained from a rolled material. The analysis was performed in terms of J-integral resistance curves. The specimens were fatigue pre-cracked and hydrogen charged before testing them at different temperatures in the range of 293–473 K. A negative influence of the H content on material toughness was important even at very small concentrations, being partially restored when the test temperature increased. Except for some specimens with high H concentration tested at room temperature, the macroscopic fracture behaviour was ductile. The role of Zr-hydrides and Zr(Fe,Cr)2 precipitates in the crack growth and the dependence with hydrogen content were analysed by observation of the fracture surfaces and determination of the Zr(Fe,Cr)2 precipitates density on them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号