首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low-power low-voltage fully integrated fast-locking quad-band (850/900/1800/1900-MHz) GSM-GPRS transmitter is described. It exploits closed-loop phase-locked loop (PLL) upconversion using a modulated fractional-N frequency synthesizer with digital auto-calibration. It uses a type-I PLL in a mostly digital IC with no external components and achieves a lock time of 43 /spl mu/s, a tuning range of 500 MHz, receive-band phase noise of -158dBc/Hz and -165 dBc/Hz for the high and low bands, respectively, and reference feed through of -93.9 dBc. It is implemented in 2.1 mm/sup 2/ using a 0.13-/spl mu/m CMOS process and meets all quad-band GSM transmitter specifications with a current consumption of only 28 mA from a single 1.5-V power supply.  相似文献   

2.
This paper presents a single-chip CMOS quad-band (850/900/1800/1900 MHz) RF transceiver for GSM/GPRS/EDGE applications which adopts a direct-conversion receiver, a direct-conversion transmitter and a fractional-N frequency synthesizer with a built-in DCXO. In the GSM mode, the transmitter delivers 4 dBm of output power with 1$^{circ}$ RMS phase error and the measured phase noise is ${-}$164.5 dBc/Hz at 20 MHz offset from a 914.8$~$MHz carrier. In the EDGE mode, the TX RMS EVM is 2.4% with a 0.5 $~$dB gain step for the overall 36 dB dynamic range. The RX NF and IIP3 are 2.7 dB/ ${-}$12 dBm for the low bands (850/900 MHz) and 3 dB/${-}$ 11 dBm for the high bands (1800/1900 MHz). This transceiver is implemented in 0.13 $mu$m CMOS technology and occupies 10.5 mm$^{2}$ . The device consumes 118 mA and 84 mA in TX and RX modes from 2.8 V, respectively and is housed in a 5$,times,$ 5 mm$^{2}$ 40-pin QFN package.   相似文献   

3.
This paper describes the design and performance of the first tri-band (2100, 1900, 800/850 MHz) single-chip 3G cellular transceiver IC for worldwide use. The transceiver has been designed to meet all narrowband blocker, newly proposed Adjacent Channel II, and Category 10 HSDPA (High Speed Downlink Packet Access) requirements. The design is part of a reconfigurable reference platform for multi-band, multi-mode (GSM/EDGE + WCDMA) radios. The zero-IF receiver is comprised of a novel multi-band quadrature mixer, seventh-order baseband filtering, and a novel DC offset correction scheme, which exhibits no settling time or peak switching transients after gain steps. The receiver lineup is designed to optimize HSDPA throughput and minimize sensitivity to analog baseband filter bandwidth variations. The direct-launch transmitter is made up of a third-order baseband filter, an I/Q modulator with variable gain, an integrated transformer, an RF variable gain amplifier, and a power amplifier driver. At +9.5-dBm output power, the transmitter achieves an error vector magnitude (EVM) of 4%. Fractional-N synthesizers achieve fast lock times of 50 /spl mu/s (150 /spl mu/s) within 20 ppm (0.1 ppm). Automatically calibrated, integrated VCOs achieve a 1.6-GHz tuning range to facilitate coverage over all six 3GPP frequency bands. The IC draws 34 mA in receive (18-mA receiver plus 16-mA fractional-N PLL/VCO) and 50 to 62 mA in transmit (-76 dBm to +9.5 dBm), including PLL/VCO, using a 2.775-V supply voltage. The RF transceiver is integrated with the baseband signal processing and associated passives in a 165-pad package, resulting in the first tri-band 3G radio transceiver with a digital interface which requires no external components.  相似文献   

4.
A single chip quad-band multi-mode (GSM900/ DCS1800/PCS1900/CDMA2K) direct-conversion RF receiver with integrated baseband ADCs is presented. The fully integrated RF receiver is implemented in a 90-nm single poly, six level metal, standard digital CMOS process with no additional analog and RF components. The highly digital multi-mode receiver uses minimum analog filtering and AGC stages, digitizing useful signal, dynamic DC offsets and blockers at the mixer output. The direct-conversion GSM front-end utilizes resistive loaded LNAs with only two coupled inductors per LNA. The GSM front-end achieves a 31.5 dB gain and a 2.1 dB integrated noise figure with a 5 dB noise figure under blocking conditions. The CDMA2K front-end utilizes a self-biased common-gate input amplifier followed by passive mixers, achieving wideband input matching from 900 MHz up to 2.1 GHz with an IIP3 of +8 dBm. The GSM receiver consumes 38 mA from a power supply of 1.5 V and CDMA2K receiver consumes 16 mA in the low band and 21 mA in the high band. The multi-mode receiver, including LO buffers and frequency dividers, ADCs, and reference buffers, occupies 2.5 mm/sup 2/.  相似文献   

5.
We present the receiver in the first single-chip GSM/GPRS transceiver that incorporates full integration of quad-band receiver, transmitter, memory, power management, dedicated ARM processor and RF built-in self test in a 90-nm digital CMOS process. The architecture uses Nyquist rate direct RF sampling in the receiver and an all-digital phase-locked loop (PLL) for generating the local oscillator (LO). The receive chain uses discrete-time analog signal processing to down-convert, down-sample, filter and analog-to-digital convert the received signal. A feedback loop is provided at the mixer output and can be used to cancel DC-offsets as well to study linearization of the receive chain. The receiver meets a sensitivity of$-$110 dBm at 60mA in a 1.4-V digital CMOS process in the presence of more than one million digital gates.  相似文献   

6.
A quad-band 8PSK/GMSK polar transceiver   总被引:1,自引:0,他引:1  
The addition of 8PSK modulation to the GSM standard creates the need for architectural modifications to achieve necessary performance while maintaining a cost-effective solution. A large-signal polar modulation transmitter allows the use of an efficient nonlinear power amplifier (PA) for both GMSK and 8PSK. Digital interfaces are used for both receiver and transmitter, with analog options available for compatibility with older technology baseband systems. The receiver section of the transceiver is programmable to operate in direct conversion mode or multiple VLIF modes. All analog and digital filtering necessary to define the final channel is included. The transmit section of the transceiver uses an all digital system with a fractional-N digital modulator for the phase path. The amplitude path uses a Powerstar PA with both the ramp and the amplitude modulation applied to the collector. The transceiver meets or exceeds all specifications for both GMSK and 8PSK in all four cellular bands (850/900/1800/1900).  相似文献   

7.
We propose and demonstrate the first RF digitally controlled oscillator (DCO) for cellular mobile phones. The DCO is part of a single-chip quad-band fully compliant GSM transceiver realized in a 90 nm digital CMOS process. Wide and precise linear frequency tuning is achieved through digital control of a large array of standard n-poly/n-well MOSCAP devices that operate in flat regions of their C- V curves. The varactors are partitioned into binary-weighted and unit-weighted banks that are sequentially activated during frequency locking and tracking. The finest varactor step size is 12 kHz at the 1.6-2.0 GHz high-band output. To attenuate the quantization noise to below the natural oscillator phase noise, the varactors undergo high-speed second-order /spl Sigma//spl Delta/ dithering. We analyze the effect of the /spl Sigma//spl Delta/ dithering on the phase noise and show that it can be made sufficiently small. The measured phase noise at 20 MHz offset in the GSM900 band is -165 dBc/Hz and shows no degradation due to the /spl Sigma//spl Delta/ dithering. The 3.6 GHz DCO core consumes 18.0 mA from a 1.4 V supply and has a very wide tuning range of 900 MHz to support the quad-band operation.  相似文献   

8.
The analog power amplifier (PA) control loop of a fully integrated GSM/GPRS quad-band transceiver, suitable for GSM 850, GSM 900, DCS 1800, PCS 1900, and GPRS class 12 applications is presented. The control loop is based on a fully integrated PA controller (PAC) which meets applicable 3GPP GSM/GPRS specifications. Both the gain and the bandwidth of the PA control loop are programmable as well as the standby voltage delivered to the external PA: these features, together with a high driving capability (8.4 mA at 2.5 V), make this solution capable of interfacing many combinations of PAs, couplers, and detectors. The PAC has been integrated in a BiCMOS SiGe 0.35-/spl mu/m process and measures 0.33 mm/sup 2/. The current consumption from a single 2.8-V power supply is 2.8 mA without load and 7.2 mA in the application using Hitachi's PF08109B PA.  相似文献   

9.
Miniature built-in multiband antennas for mobile handsets   总被引:2,自引:0,他引:2  
In this paper, we propose a new design for built-in handset antennas in that metal strips as additional resonators are directly connected with a feed strip. With the new design scheme, a quad-band antenna for covering GSM900, DCS1800, PCS1900, and UMTS2000 bands and a five-band antenna for covering GSM900, DCS1800, PCS1900, UMTS2000, and ISM2450 bands for use in mobile built-in handsets are experimentally carried out. Compared with the parasitic form with a shorted strip placed away from the main radiator in the open literature, the size of the proposed antennas can be reduced by an order of 10/spl sim/20%, which is desirable since the size of mobile phones is becoming smaller according to consumer preferences. Moreover, the impedance matching for each band of the new antennas becomes easy. The new quad-band and five-band built-in handset antennas are developed within the limits of a 36/spl times/16/spl times/8 mm/sup 3/ volume. The antennas are also analyzed using the finite-difference time-domain technique. A good agreement is achieved between measurement and simulation.  相似文献   

10.
A compact carrier generation system enabling proper interoperability among quad-band GSM, WCDMA (FDD and TDD), and WLAN (802.11a/b/g) standards is developed. The implementation is achieved in 0.25-/spl mu/m BiCMOS-SiGe process. The measured tuning range is higher that 1 GHz (3.05 to 4.1 GHz) exceeding the specifications by 25%. The voltage-controlled oscillator (VCO) exhibits a phase noise of -118 and -125 dBc/Hz measured, respectively, at 400 kHz and 1 MHz offsets while drawing 2.5 mA from 2.5 V supply. The measured phase noise at 400 kHz offset of the PCS/DCS output local-oscillator (LO) signal and the GSM output LO signal is, respectively, -124 dBc/Hz and -130 dBc/Hz.  相似文献   

11.
This paper describes a high-performance WLAN 802.11a/b/g radio transceiver, optimized for low-power in mobile applications, and for co-existence with cellular and Bluetooth systems in the same terminal. The direct-conversion transceiver architecture is optimized in each mode for low-power operation without compromising the challenging RF performance targets. A key transceiver requirement is a sensitivity of -77 dBm (at the LNA input) in 54 Mb/s OFDM mode while in the presence of a GSM1900 transmitter interferer. The receiver chain achieves an overall noise figure of 2.8/3.2 dB, consuming 168/185 mW at 2.8 V for the 2.4/5GHz bands, respectively. Signal loopback and transmit power detection techniques are used in conjunction with the baseband modem processor to calibrate the transmitter LO leakage and the transceiver I/Q imbalances. Fabricated in a 70 GHz f/sub T/ 0.25-/spl mu/m SiGe BiCMOS technology for system-in-package (SiP) use, the dual-band, tri-mode transceiver occupies only 4.6 mm/sup 2/.  相似文献   

12.
A novel side-feed planar monopole antenna capable of triple-frequency operation at about 900, 1800 and 1900 MHz is presented. The planar monopole antenna occupies a small area of 6/spl times/31 mm, and is easily made using thin copper. The planar monopole antenna can be side-fed and mounted perpendicularly to the main circuit board of a communication device so that it offers a novel design with a free degree of feed point so as to save device space, resulting in a low profile to the system ground plane. In addition, the obtained impedance bandwidths of the proposed antenna at about 900, 1800 and 1900 MHz can cover the GSM (890-960 MHz), DCS (1710-1880 MHz) and PCS (1850-1990 MHz) bands.  相似文献   

13.
A complete digitally controlled oscillator (DCO) system for mobile phones is presented with a comprehensive study. The DCO is part of a single-chip fully compliant quad-band GSM transceiver realized in a 90-nm digital CMOS process. By operating the DCO at a 4 /spl times/ GSM low-band frequency followed by frequency dividers, the requirement of on-chip inductor Q and the amount of gate oxide stress are relaxed. It was found that a dynamic divider is needed for stringent TX output phase noise while a source-coupled-logic divider can be used for RX to save power. Both dividers are capable of producing a tight relation between four quadrature output phases at low voltage and low power. Frequency tuning is achieved through digital control of the varactors which serve as an RF DAC. Combining a MIM capacitor array and two nMOS transistor arrays of the varactors for the RF DAC, a highly linear oscillator gain which is also insensitive to process shift is achieved. The finest varactor step size is 12 kHz at the 1.6-2.0 GHz output. With a sigma-delta dithering, high frequency resolution is obtained while having negligible phase noise degradation. The measured phase noise of -167 dBc/Hz at 20 MHz offset from 915 MHz carrier and frequency tuning range of 24.5% proves that this DCO system can be used in SAW-less quad-band transmitters for mobile phones.  相似文献   

14.
All-digital PLL and transmitter for mobile phones   总被引:3,自引:0,他引:3  
We present the first all-digital PLL and polar transmitter for mobile phones. They are part of a single-chip GSM/EDGE transceiver SoC fabricated in a 90 nm digital CMOS process. The circuits are architectured from the ground up to be compatible with digital deep-submicron CMOS processes and be readily integrateable with a digital baseband and application processor. To achieve this, we exploit the new paradigm of a deep-submicron CMOS process environment by leveraging on the fast switching times of MOS transistors, the fine lithography and the precise device matching, while avoiding problems related to the limited voltage headroom. The transmitter architecture is fully digital and utilizes the wideband direct frequency modulation capability of the all-digital PLL. The amplitude modulation is realized digitally by regulating the number of active NMOS transistor switches in accordance with the instantaneous amplitude. The conventional RF frequency synthesizer architecture, based on a voltage-controlled oscillator and phase/frequency detector and charge-pump combination, has been replaced with a digitally controlled oscillator and a time-to-digital converter. The transmitter performs GMSK modulation with less than 0.5/spl deg/ rms phase error, -165 dBc/Hz phase noise at 20 MHz offset, and 10 /spl mu/s settling time. The 8-PSK EDGE spectral mask is met with 1.2% EVM. The transmitter occupies 1.5 mm/sup 2/ and consumes 42 mA at 1.2 V supply while producing 6 dBm RF output power.  相似文献   

15.
A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks(WBANs)in medical applications is presented.The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs.The transceiver consists of a main receiver(RX)with an ultra-low-power free-running ring oscillator and a high speed main transmitter(TX)with fast lock-in PLL.A passive wake-up receiver(WuRx)for wake-up function with a high power conversion efficiency(PCE)CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power.The chip is implemented in a 0.18μm CMOS process.Its core area is 1.6 mm~2. The main RX achieves a sensitivity of-55 dBm at a 100 kbps OOK data rate while consuming just 210μA current from the 1 V power supply.The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is-15 dBm and the PCE is more than 25%.  相似文献   

16.
A fractional-N phase-locked loop (PLL) serves as a Gaussian minimum-shift keying (GMSK) transmitter and a receive frequency synthesizer for GSM. The entire transmitter/synthesizer is fully integrated in 0.35-/spl mu/m CMOS and consumes 17.4 and 12 mW from 2.5 V in the transmit and receive modes, respectively, including an on-chip voltage-controlled oscillator. The circuit meets GSM specifications on modulation accuracy in transmit mode, and measured phase noise from the closed-loop PLL is -148 dBc/Hz and -162 dBc/Hz, respectively, at 3- and 20-MHz offset. Worst case spur at 13-MHz offset is -77 dBc.  相似文献   

17.
This paper presents a single-chip dual-band CMOS direct-conversion transceiver fully compliant with the IEEE 802.11a/b/g standards. Operating in the frequency ranges of 2.412-2.484 GHz and 4.92-5.805 GHz (including the Japanese band), the fractional-N PLL based frequency synthesizer achieves an integrated (10 kHz-10 MHz) phase noise of 0.54/spl deg//1.1/spl deg/ for 2/5-GHz band. The transmitter error vector magnitude (EVM) is -36/-33 dB with an output power level higher than -3/-5dBm and the receiver sensitivity is -75/-74 dBm for 2/5-GHz band for 64QAM at 54 Mb/s.  相似文献   

18.
This paper presents a direct‐conversion CMOS transceiver for fully digital DS‐UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase‐locked loop (PLL), and a voltage controlled oscillator (VCO). A single‐ended‐to‐differential converter is implemented in the down‐conversion mixer and a differential‐to‐single‐ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 mm2 die using standard 0.18 µm CMOS technology and a 64‐pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low‐power, and high‐speed wireless personal area network.  相似文献   

19.
A UWB CMOS transceiver   总被引:3,自引:0,他引:3  
A direct-conversion ultra-wideband (UWB) transceiver for Mode 1 OFDM applications employs three resonant networks and three phase-locked loops. Using a common-gate input stage, the receiver allows direct sharing of the antenna with the transmitter. Designed in 0.13-/spl mu/m CMOS technology, the transceiver provides a total gain of 69-73 dB and a noise figure of 6.5-8.4 dB across three bands, and a TX 1-dB compression point of -10 dBm. The circuit consumes 105 mW from a 1.5-V supply.  相似文献   

20.
A single-chip CMOS global system for mobile communications/digital cellular system dual-band offset phase-locked loop (OPLL) transmitter is presented in this paper. This chip includes a quadrature modulator and an OPLL modulation loop. Except for the loop filter and high-power voltage-controlled oscillator (TX VCO), everything is integrated into this chip to form a dual-band transmitter. This transmitter integrated circuit is fabricated in a 0.25-mum CMOS process. The current consumption without the TX VCO is approximately 23 mA under 2.7-V power supply for both bands. The measured rms and peak phase errors for Gaussian minimum shift-keying (GMSK) modulated signals are approximately 1deg and 2.4deg, respectively. The measurements show comparable performance to its BiCMOS counterparts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号