首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Barium titanate powder has been prepared via a semi-oxalate method that uses barium oxalate and TiO2 precursors, instead of titanyl oxalate. Barium oxalate was precipitated from nitrate solution onto the surface of TiO2 powders. Crystallization of BaTiO3 from the precursors was investigated by TGA, DTA and XRD analysis. It is evident that an intermediate barium oxycarbonate along with BaCO3, forms between 450–500°C and that decomposes to BaCO3 again at high temperature. Decomposition of BaCO3 occurs at much lower temperature, from 600°C onwards, due to the presence of TiO2. The precursor completely transforms into BaTiO3 at 900°C. Nanometer size BaTiO3 crystallites are produced during this synthesis due to the lower calcination temperature. The crystalline morphology of BaTiO3 is controlled mainly by the morphology of BaCO3, which formed in the intermediate stage.  相似文献   

2.
In order to reduce sintering temperature and prevent adverse dielectric effects, pure BaTiO3 powder with the addition of Mn-Si-O glass was sintered in the temperature range of 1175–1300°C. Microstructural observation showed that BaTiO3 grains of the sintered samples only grew from the initial 400 nm to an average of 430 nm between 1175–1275°C for 1 h, or sintered at 1250°C as long as 27 h. Abnormal BaTiO3 grains are not found in the sintered samples. The microstructure and phase analysis showed that the dielectric properties, tetragonality, and grain growth of BaTiO3 are closely controlled by the formation of the liquid phase, newly formed Ba2TiSi2O8 grains, and Mn solid solution in BaTiO3 grains.  相似文献   

3.
Abstract

BaTiO3 (BTO) and SrTiO3 (STO) and BaxSr1-xTiO3 (x=0–1) (BST) thin films have been epitaxially grown on LaAlO3 and SrTiO3:Nb at a substrate temperature of 800°C using a new liquid source delivery technique called injection MOCVD. A X-ray study evidenced FWHMs of 0.16° and 0.45° for SrTiO3 and BaTiO3 respectively.

In a next step the feasibility of BaTiO3/SrTiO3 superlattices was studied. The multilayers obtained were epitaxially grown on LaAlO3 as well as on SrTiO3:Nb. The structural properties were studied using X-ray diffraction as well as XPS, proving the low interface roughness of 1nm. The XPS study also confirmed the absence of carbon contamination in the film.  相似文献   

4.
Low-temperature sintering of BaTiO3 ceramics using Li2O as sintering aids was investigated with a special influences of Li2O content (0–4?mol%) and sintering temperature (1000–1100°C) on crystalline structure and electrical properties. The sinterability of BaTiO3 ceramics significantly improved by adding Li2O, whose densification sintering temperature reduced from 1300°C to 1000°C. XRD pattern indicated that BaTiO3-xLi2O samples were single phase with a tetragonal symmetry as x?=?00.3?mol%, while the samples became an orthorhombic symmetry as x?=?0.5–4?mol%. The densification sintering temperature in which samples showed relative density higher than 90?% decreased with increasing Li2O content. A maximum d 33 value (200 pC/N) was obtained for the BaTiO3-0.5?mol%Li2O sample sintered at 1050°C, which is attributed to a vicinity of the phase transition and the high density. Adding Li2O not only reduced the sintering temperature but also obtained the acceptable piezoelectric properties, which will make BaTiO3 become a kind of promising and practical lead-free piezoelectric ceramics.  相似文献   

5.
The electric properties of BaTiO3–(Bi1/2Na1/2)TiO3 (BT–BNT) solid solution ceramics were studied as a lead-free PTCR (positive temperature coefficient of resistivity) thermistor material usable over 130°C. For determining the maximum switching temperature T s, the phase diagram of BT–BNT binary system was clarified. Two semiconductorization processes and their electric properties are described. The lanthanum(La)-doped BBNT ceramics sintered in air still showed dielectric behaviors, but the niobium(Nb)-doped ones had a low resistivity at room temperature, ρ RT, on the order of 103 Ωcm and showed a PTC behavior. Sintering under a low O2 atmosphere produces BT–BNT ceramics with less than 102 Ωcm compared to those prepared in air. Our current research produced the BBNT ceramics with T s values around 210°C by increasing the (Bi1/2Na1/2) content in the ceramics.  相似文献   

6.
ABSTRACT

BaTiO3 films were deposited by the direct vapor deposition (DVD) technique to prepare thin dielectric layers for multilayer ceramic chip capacitors (MLCCs). The BaTiO3 films were successfully prepared by co-evaporation of the BaTiO3 ceramic and Ti metal source. The films deposited at room temperature and 600°C were amorphous and crystalline phases, respectively. The intensity of (110) and (111) peaks increased as Ba/Ti ratios were close to stoichiometric composition. BaTiO3 films deposited with e-beam power of 700 W showed the deposition rate of 33 nm/min. The dielectric constant and dissipation factor of BaTiO3 films measured at 1 kHz were 150~ 180 and 2~ 5%, respectively. The capacitance decreased with increasing the temperature and varied only between 787pF and 752pF in the temperature range 15~ 125°C.  相似文献   

7.
As a positive temperature coefficient of resistivity (PTCR) material, (1-x)BaTiO3-xK0.5Bi0.5TiO3 (BT-KBT, 0.05≦ x ≦0.15) ceramics without any donor doping were prepared by a conventional oxide mixing method. All samples were sintered in an Ar atmosphere at 1280?~?1350°C, subsequently, reoxidized at 800?~?1100°C in a gas mixture (99 %Ar–1 %O2). The PTCR behavior of BT-KBT ceramics were investigated in terms of KBT content, reoxidation temperature and time. The results showed that the BT-KBT ceramics exhibited an abrupt increase in their resistivity near the Curie temperature (Tc) after annealing in gas mixture, Tc of 0.9BT-0.1KBT ceramic was shifted to a higher temperature (~150°C). Furthermore, the room-temperature resistivity (ρRT) of ceramic samples sintered in Ar and reoxidized in a gas mixture decreased to 102 Ω·cm. The jump in resistivity (maximum resistivity [ρmax]/minimum resistivity [ρmin]) was enhanced by three orders of magnitude through a suitable reduction–reoxidation method without sacrificing the ρRT.  相似文献   

8.
Li2MgTiO4 (LMT) ceramics which are synthesized using a conventional solid-state reaction route. The LMT ceramic sintered at 1250°C for 4 h had good microwave dielectric properties. However, this sintering temperature is too high to meet the requirement of low-temperature co-fired ceramics (LTCC). In this study, the effects of B2O3 additives and sintering temperature on the microstructure and microwave dielectric properties of LMT ceramics were investigated. The B2O3 additive forms a liquid phase during sintering, which decreases the sintering temperature from 1250°C to 925°C. The LMT ceramic with 8 wt% B2O3 sintered at 925°C for 4 h was found to exhibit optimum microwave dielectric properties: dielectric constant 15.16, quality factor 64,164 GHz, and temperature coefficient of resonant frequency -28.07 ppm/°C. Moreover, co-firing of the LMT ceramic with 8 wt% B2O3 and 20 wt% Ag powder demonstrated good chemical compatibility. Therefore, the LMT ceramics with 8 wt% B2O3 sintered at 925°C for 4 h is suitable for LTCC applications.  相似文献   

9.
Nanocomposite ceramics containing a mixture of two ferroelectric phases, La-doped BaTi2O5 and BaTiO3, with carefully-controlled phase amounts and ceramic microstructure have temperature-independent permittivity and low dielectric loss over very wide temperature ranges: ɛ = 95 ± 10 from 25 to 600 °C; tan δ = 0.02(2) from 25 to 400 °C, measured at 100 kHz. Further optimisation of properties should be possible.  相似文献   

10.
Phase structure, microstructure, piezoelectric and dielectric properties of the 0.4 wt% Ce doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (Ce-BNT6BT) ceramics sintered at different temperatures have been investigated. The powder X-ray diffraction patterns showed that all of the Ce-BNT6BT ceramics exhibited a single perovskite structure with the co-existence of the rhombohedral and tetragonal phase. The morphologies of inside and outside of the bulk indicated that the different sintering temperatures did not cause the second phase on the inside of bulk. However, the TiO2 existed on the outside of the bulk due to the Bi2O3 and Na2O volatilizing at higher temperature. The ceramics sintered at 1,200 °C showed a relatively large remnant polarization (P r) of about 34.2 μC/cm2, and a coercive field (E c) of about 22.6 kV/cm at room temperature. The permittivity ? r of the ceramics increased with the increasing of sintering temperature in antiferroelectric region, the depolarization temperature (T d) increased below 1,160 °C then decreased at higher sintering temperature. The resistivity (ρ) of the Ce-BNT6BT ceramics increased linearly as the sintering temperature increased below 1,180 °C, but reduced as the sintering temperature increased further. A maximum value of the ρ was 3.125?×?1010 ohm m for the Ce-BNT6BT ceramics sintered at 1,180 °C at room temperature.  相似文献   

11.
Ultra-fine BaTiO3 powders were hydrothermally prepared by using Ba Ti-peroxo-hydroxide precursor. Amorphous Ba Ti-peroxo-hydroxide precursor were prepared by coprecipitation of Ba(NO3)2 and TiCl4 aqueous solution adding in NH4OH aqueous solution. The phase-pure BaTiO3 powders with a cubic perovskite structure were synthesized at temperature as low as 110_C and in the pH range of 10–12. This processing method provides a simple low temperature route for producing BaTiO3 nanoparticles. Under a TEM image and a SAD pattern analysis, it is evident that BaTiO3 powders had spherical shape and single crystal nature. The BaTiO3 ceramic sintered at 1200_C for 1 h had 97% of theoretical density and a relatively high dielectric constant ( r = 3500).  相似文献   

12.
We have fabricated various amount of Li2CO3 doped (Ba,Sr)TiO3 (BST) ceramics for LTCCs (Low Temperature Co-fired Ceramics) applications through the conventional sintering method. By introducing Li2CO3 into BST ceramics, the sintering temperature was decreased from 1350°C to 900°C. In this study, we discussed the crystalline and structural properties of Li2CO3 doped BST ceramics. By scanning X-ray diffraction analysis, we found that 1, 3, and 5 wt% Li2CO3 doped (Ba,Sr)TiO3 ceramics have perovskite structure without any pyrochlore phases. Frequency dependent dielectric properties were analyzed and discussed. Scanning Electron Microscopy (SEM) images depending on the sintering temperature and dopants were prepared and discussed. The crystalline and dielectric properties of Li2CO3 doped (Ba,Sr)TiO3 were discussed.  相似文献   

13.
Bismith sodium titanate (BNT)-based powders were prepared by conventionally mixed-oxide method using Bi2O3, Na2CO3 and TiO2. The La2O3 was added as the modifier to the BNT composition for easily poling and reducing an abnormal dielectric loss at high temperatures. In this study, the investigated compositions were Bi0.5Na0.5TiO3 and Bi0.5Na0.485La0.005TiO3. The powders were calcined at 900 °C for 2 h by slow heating rate at 100 °C/h. The calcined BNT-based powders were then attrition-milled for 3 h with a high speed at 350 rpm. After drying, the fine powders were uniaxially pressed and then cold-isostatically pressed (CIP) at 240 MPa for 10 min. All pressed pellets were sintered at 1000–1100 °C for 2 h in air atmosphere. The microstructure of sintered pellets was investigated by SEM. Results of dielectric and piezoelectric property measurement were also reported.  相似文献   

14.
We present and discuss the results of calculations of BaTiO3 (100) surface relaxation and surface rumpling with two different terminations (BaO and TiO2) and BaTiO3 (110) surface relaxation with three different terminations (Ba, TiO and O). These are based on a hybrid B3PW exchange-correlation technique. The O-terminated A-type BaTiO3 (110) surface has a surface energy close to that for the (100), which indicates that both (110) and (100) BaTiO3 surfaces can exist simultaneously in perovskite ceramics.  相似文献   

15.
The effects of CuO and TiO2 additives on the microstructure and microwave dielectric properties of Al2O3 ceramics were investigated. Al2O3 ceramics with CuO and TiO2 additions can be well sintered to achieve 93∼98% theoretical densities below 1,360 °C due to Ti4Cu2O liquid phase sintering effect. The Qf values decreased with increasing CuO and TiO2 content, due to the formation of the second phase Ti4Cu2O. However, the varying behaviors of the dielectric constant (ɛ r ) and temperature coefficients (τ f ) were associated with phase constitutions, as a result of the change of CuO and TiO2content. The τ f can be shifted close to 0 ppm/°C by controlling the content of CuO and TiO2. The specimens with 0.5 wt.% CuO and 7 wt.% TiO2 sintered at 1,360 °C for 4 h showed ɛ r of 11.8, Qf value of 30,000 GHz, and τ f of −7 ppm/°C.  相似文献   

16.
《Integrated ferroelectrics》2013,141(1):915-922
Ba(Mg1/3Ta2/3)O3 (BMT) microwave dielectric thin films were successfully synthesized by a modified pulsed laser deposition (PLD) process, which includes low temperature (200°C) deposition and high temperature (>500°C) annealing. Crystalline structured BMT thin films were obtained when the PLD-deposited films were post-annealed at a temperature higher than 500°C in oxygen atmosphere. The characteristics of BMT thin film, including crystallinity, grain size, film roughness, and dielectric properties were improved with annealing temperature, achieving dielectric constant K = 23.5 and dissipation factor tan δ = 0.015 (at 1 MHz) for the 800°C-annealed films.  相似文献   

17.
In this paper we report a comparison concerning the properties of BaTiO3 (BTO) ceramics obtained by two soft chemical routes, modified Pechini method and thermal decomposition of oxalate-based precursor. XRD data show the formation of single phase BaTiO3 with tetragonal symmetry when the polymeric citrate-based precursor was annealed at 850 °C, 2 h. In the case of oxalate based-precursor, longer thermal treatment is required to obtain BaTiO3 free of any secondary phases. For BaTiO3 powders prepared by modified Pechini method, TEM and SEM investigations revealed the obtaining of uniformly sized particles forming spherical agglomerates inside large, non-uniform and partially sintered aggregates. The powders synthesized via oxalate route show particles of various sizes, with the same tendency of spherical agglomerates formation, but unlike the modified Pechini synthesis, more uniform and smaller aggregates with well-defined hexagonal-like shape were noticed. The relative permittivity values of 6,478 and 5,088 at Curie temperatures of 127 and 130 °C and low dielectric losses (tan δ?=?0.012) at room temperature were obtained for ceramic samples synthesized via Pechini method and oxalate route, respectively.  相似文献   

18.
The <001> fiber-textured Na1/2 Bi1/2TiO3-BaTiO3 (6 mol% BaTiO3) ceramics were fabricated by reactive-templated grain growth (RTGG), using plate-like Bi4Ti3O14 (BiT) particles prepared by a molten salt method as templates. The effects of sintering conditions on texture development and microstructure evolvement were both studied, and the mechanisms of grain orientation and densification were discussed. High Lotgering factor (≥96%) and high density (≥96% theoretic density) textured Na1/2 Bi1/2TiO3-6BaTiO3 ceramics were prepared by using the max templates concentration supplying 100% Bi in the final product, and sintering at 1200 °C for 10 h. The NBT-6BT obtained exhibited good piezoelectric performance with piezoelectric coefficient d 33 ?=?241pC/N, and electromechanical coupling factor k p ?=?41.2%, k t ?=?66.5% at room temperature.  相似文献   

19.
A simple, inexpensive gas phase reaction termed as “nanocarving process” converts TiO2 grains into arrays of single crystal nanofibers by selective and anisotropic etching. This process is conducted by exposing dense polycrystalline TiO2 to a H2/N2 environment at 700 °C. The dimensions of nanofibers are around 20 nm in diameter and 1 μm in length. The preferred crystallographic orientation for the nanocarving process is the <001> direction. Nanoparticles composed of Fe and Ni were observed on the surface of TiO2 that formed nanofiber tips. Sintering parameters before the nanocarving treatment play a critical role in the formation of nanofibers. As sintering temperature and time increased, the rate of nanofiber generation decreased. Moreover, it was observed that by varying the heat treatment conditions, it is possible to create other structures like nanowhiskers and nanofilaments. Nanowhiskers were formed by reoxidation of nanofiber-formed TiO2 over 600 °C. Nano-filaments were generated by heat treating sintered TiO2 in N2-carrying water vapor at 700 °C.  相似文献   

20.
A conventional BaO–Nd2O3–TiO2 ceramic of microwave dielectric material was added to rare-earth derived borate glasses (La2O3–B2O3–TiO2) for use as LTCC (low temperature co-fired ceramic) materials. The sintering behavior, phase evaluation, and microwave dielectric properties were investigated. It was found that increasing the sintering temperature from 750 to 850 °C led to increases in shrinkage and microwave dielectric properties (≈15 for ?r , >10,000 GHz for Q*f0 and >94 ppm/ °C for τ f at 7–8 GHz for resonant frequency). The results suggest that a composite with suitable additives for τ f could feasibly be developed as a material for LTCC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号