首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferroelectric materials are used in a various applications ranging from sensors and actuators to ferroelectric transducers, microelectronics and health monitoring systems. The lead-free ferroelectric materials instead of lead based material are having a great interest of researchers for the development of materials owing to environmental issues. This paper presents the study of lead free composition of [(1???x)Ba0.9Ca0.1TiO3–x(BaSn0.2Ti0.8O3)] for x?=?0, 0.4,0.5 and 0.6 polycrystalline ceramics. This study deals with the investigation of energy storage density and thermal energy harvesting potential through the use of Olsen cycle. The maximum energy storage density is found 63.5?kJ/m3 and maximum energy conversion density of 130?kJ/m3 was observed for cycle operating at 303 K–343 K and 13–19?kV/cm for x?=?0.5 composition.  相似文献   

2.
Several new systems of Bi0.5Na0.5TiO3-based lead-free piezoelectric ceramics were proposed based on the design of the multiple complex in the A-site of ABO3 compounds. These ceramics were prepared by conventional ceramic techniques. The comparison of the piezo- and ferroelectric properties of these ceramics with those of the best properties of the Bi0.5Na0.5TiO3-based lead-free piezoelectric ceramics published recently shows that these ceramics of the new systems have better ferroelectric and piezoelectric performance, and better temperature characteristic of the properties. Among these materials, Bi0.5(Na1?x?y K x Li y )0.5TiO3 possesses higher piezoelectric constant (d 33?=?230.8 pC/N), higher electromechanical couple factor (k p?=?0.41), larger remanent polarization (P r?=?40 μC/cm2) and a better PE hysteresis loop below 200 °C. Practical devices such as ceramic middle frequency filters and buzzers have been made by using these lead-free piezoelectric ceramics.  相似文献   

3.
Lead-free Na0.5Bi0.5TiO3 -BaTiO3 ceramics have been prepared in the whole range of concentrations and studied at room-temperature by means of X-ray, Raman scattering and infrared techniques. X-ray measurements revealed rhombohedral, rhombohedral-tetragonal boundaries and tetragonal modifacations depending on the contents of BaTiO3. The distinct changes of the Raman and infrared spectra with increasing of BaTiO3 content, which were correlated with X-ray results, were observed. The broad phonon spectra indicated the disorder in the A site of Na0.5Bi0.5TiO3 -BaTiO3 system.  相似文献   

4.
One dimensional ferroelectric nanostructure is noteworthy for their size-dependent dielectric, piezoelectric, and electro-optic properties with corresponding applications in smart devices such as transducers, actuators, and high-k dielectrics at the nanoscale. Due to their extremely small size and anisotropy, the control of nucleation and growth of one dimensional nanostructure materials is still a big challenge. Sol?Cgel-hydrothermal chemistry combines both the merits of sol?Cgel and hydrothermal technique, which offers a very useful tool for low-temperature synthesis of the ferroelectric nanowires. In this paper, we will review recent works devoted to the synthesis of Bi-based complex perovskite nanowires, i.e. Na0.5Bi0.5TiO3, K0.5Bi0.5TiO3, (K0.5Bi0.5)0.4Ba0.6TiO3 and (Na0.8 K0.2)0.5Bi0.5TiO3 systems. We will focus on the formation mechanism and morphology evolution of nanowires prepared in sol?Cgel-hydrothermal process. Moreover, due to the good sinterability of the nanowires, the high-densified single-phase ceramic can be fabricated even by a conventional sintering process.  相似文献   

5.
Piezoelectric and ferroelectric properties of bismuth sodium titanate, (Bi1/2Na1/2)TiO3(BNT)-based solid solution, that is, (Bi1/2Na1/2)(1-x)(Pba Bab)xTiO3(a + b = 1) [BNPB(100x-100a/100b)], are studied from the viewpoint of a new group of lead-free or low-lead content piezo-electric ceramics with a rhombohedral(Fa-tetragonal (Fβ) morphotropic phase boundary (MPB). It is evident that the MPB seems to be remarkably efficacious in promoting piezoelectric and pyroelectric activities by electrical poling. X-ray diffraction data, dielectric properties and D-E hysteresis loops show that the MPB exist near (Bi1/2Na1/2)TiO3[BNT] at x = 0.13–0.14, 0.08–0.09 and 0.06–0.07 in the case of b = 0, b = 0.5 and b = 1, respectively. BNPB ceramics are superior for piezoelectric ceramics in high-frequency ultrasonic uses, or special piezoelectric actuator materials with a lower free permittivity ε33Tε0, and a high electromechanical coupling factor k33, along with a high mechanical strength.  相似文献   

6.
[Bi1-z(Na1-x-y-zKxLiy)]0.5BazTiO3 lead-free piezoelectric ceramics were fabricated by ordinary ceramic technique and the piezoelectric and ferroelectric properties of the ceramics were studied. The ceramics can be well sintered at 1,100–1,150 °C for 2 h. X-ray diffraction (XRD) analysis shows that K+, Li+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a single-phase perovskite structure. The introduction of K+, Li+ and Ba2+ into Bi0.5Na0.5TiO3 significantly decreases the coercive field E c but maintains the large remanent polarization P r of the materials. The ceramics provide piezoelectric constant d 33 of 205 pC/N, electromechanical coupling factor k p of 0.346, remanent polarization P r of 31.7–38.5 μC/cm2, and coercive field E c of 3.18–5.16 kV/mm.  相似文献   

7.
The ternary lead-free piezoelectric ceramics system of 0.90[x(Bi1/2Na1/2)TiO3–(1???x)(Bi1/2K1/2)TiO3]–0.10(Bi1/2Ag1/2)TiO3 (x?=?0.77, 0.79, 0.81, 0.83, 0.85) were successfully synthesized by conventional ceramic sintering technique. The samples were studied by X-ray diffraction, dielectric, ferroelectric and piezoelectric measurements. The MPB composition of the system appears to be near BNKA-79 according to the results of the X-ray diffraction and ferroelectric properties. The sample with x?=?0.79 showed the highest piezoelectric constant d 33?=?160 pC/N. The maximum electromechanical coupling factors, k p and k t, are 0.30 for BNKA-79 and 0.42 for BNKA-85, respectively.  相似文献   

8.
Ferroelectric thin films of (Na1/2Bi1/2)1?x TiPb x O3 have been synthesized via a sol–gel route. Structural changes of the films were investigated by using X-ray diffraction (XRD) and Raman spectroscopy over the composition range 0?<?x?<?0.9. There occur different nano-sized clusters in the films. More interestingly, in contrast to the previously reported results on (Na1/2Bi1/2)1?x TiPb x O3 bulk ceramics, the ferroelectric thin films exhibit a rhombohedral–tetragonal structure change at x?=?0.4–0.5, together with a long range tetragonal symmetry at x?≥?0.8. The unique phase transition behaviors are discussed in relation to the growth of Pb2+TiO3 clusters upon the substitution of Pb2+ for Na+/Bi3+ cations in the (Na1/2Bi1/2)1?x TiPb x O3 films.  相似文献   

9.
The <001> fiber-textured Na1/2 Bi1/2TiO3-BaTiO3 (6 mol% BaTiO3) ceramics were fabricated by reactive-templated grain growth (RTGG), using plate-like Bi4Ti3O14 (BiT) particles prepared by a molten salt method as templates. The effects of sintering conditions on texture development and microstructure evolvement were both studied, and the mechanisms of grain orientation and densification were discussed. High Lotgering factor (≥96%) and high density (≥96% theoretic density) textured Na1/2 Bi1/2TiO3-6BaTiO3 ceramics were prepared by using the max templates concentration supplying 100% Bi in the final product, and sintering at 1200 °C for 10 h. The NBT-6BT obtained exhibited good piezoelectric performance with piezoelectric coefficient d 33 ?=?241pC/N, and electromechanical coupling factor k p ?=?41.2%, k t ?=?66.5% at room temperature.  相似文献   

10.
BaTiO3 (BT) based X9R ceramics with high permittivity about 1700 were prepared by doping and pre-sintering technique. Pure Bi0.5Na0.5TiO3 (BNT) dopant was synthesized by the conventional solid state reaction first. Using this new approach, high performance BTBNT (BT doped with BNT) materials, owning high Curie temperature (139 °C), flat ferroelectric transition region and large permittivity at room temperature, were obtained. The effects of several dopants on dielectric properties of BTBNT ceramics were measured by the LCR meter. The suppression effect for the peaks in the dielectric constant at Curie temperature of these dopants have been ranked as follows: BiNbO4 > CaZrO3 > Nb2O5 > BNT.  相似文献   

11.
Textured (Na1/2Bi1/2)TiO3-BaTiO3 (5.5 mol% BaTiO3) ceramics with <100>pc (where pc denotes the pseudocubic perovskite cell) orientation were fabricated by Templated Grain Growth (TGG) and Reactive Templated Grain Growth (RTGG) using anisotropically shaped template particles. In the case of TGG, molten salt synthesized SrTiO3 platelets were tape cast with a (Na1/2Bi1/2)TiO3-5.5 mol%BaTiO3 powder and sintered at 1200°C for up to 12 h. In the RTGG approach, Bi4Ti3O12 (BiT) platelets were tape cast with a Na2CO3, Bi2O3, TiO2, and BaCO3 powder mixture and reactively sintered. The TGG approach using SrTiO3 templates resulted in >90% texture along [001] whereas the RTGG approach using BiT templates resulted in 80% texture. The grain orientation distribution along the textured direction, as measured by X-ray rocking curve, showed a full width at half maximum of 8° and a texture fraction of 80%.  相似文献   

12.
The electric properties of BaTiO3–(Bi1/2Na1/2)TiO3 (BT–BNT) solid solution ceramics were studied as a lead-free PTCR (positive temperature coefficient of resistivity) thermistor material usable over 130°C. For determining the maximum switching temperature T s, the phase diagram of BT–BNT binary system was clarified. Two semiconductorization processes and their electric properties are described. The lanthanum(La)-doped BBNT ceramics sintered in air still showed dielectric behaviors, but the niobium(Nb)-doped ones had a low resistivity at room temperature, ρ RT, on the order of 103 Ωcm and showed a PTC behavior. Sintering under a low O2 atmosphere produces BT–BNT ceramics with less than 102 Ωcm compared to those prepared in air. Our current research produced the BBNT ceramics with T s values around 210°C by increasing the (Bi1/2Na1/2) content in the ceramics.  相似文献   

13.
Bismith sodium titanate (BNT)-based powders were prepared by conventionally mixed-oxide method using Bi2O3, Na2CO3 and TiO2. The La2O3 was added as the modifier to the BNT composition for easily poling and reducing an abnormal dielectric loss at high temperatures. In this study, the investigated compositions were Bi0.5Na0.5TiO3 and Bi0.5Na0.485La0.005TiO3. The powders were calcined at 900 °C for 2 h by slow heating rate at 100 °C/h. The calcined BNT-based powders were then attrition-milled for 3 h with a high speed at 350 rpm. After drying, the fine powders were uniaxially pressed and then cold-isostatically pressed (CIP) at 240 MPa for 10 min. All pressed pellets were sintered at 1000–1100 °C for 2 h in air atmosphere. The microstructure of sintered pellets was investigated by SEM. Results of dielectric and piezoelectric property measurement were also reported.  相似文献   

14.
The structural origin of high piezoelectricity in perovskite-type relaxor ferroelectrics is a fundamental issue that remains elusive for decades. In this study, high and unstable piezoelectricity for the poled ceramics, accompanied with a crossover from a nonergodic relaxor to an ergodic relaxor state at room temperature, has been observed for 0.95(Bi0.5Na0.5)1-x (Li0.5Sm0.5) x TiO3–0.05BaTiO3 ceramics with x = 0.06. The result suggests that the high piezoelectric activity origins from the electric field-induced-ordered nanodomains. The rapid loss of piezoelectricity stems from the reversibility of the ordered nanodomains after removing applied electric field.  相似文献   

15.
In this article, (Na0.5Bi0.5)1-xBaxTiO3 lead-free piezoelectric ceramics were prepared by solid-state reaction. The influence of Ba contents on phase structures, compositional distribution and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 ceramics were systematically investigated to further understand the nature of phase transition. It was found that the phase structure of (Na0.5Bi0.5)1-xBaxTiO3 transforms from rhombohedral to tetragonal symmetry at x = 0.06 ~ 0.07 and Ba2+ segregation forms the coexistence of Ba-rich tetragonal and Ba-deficient rhombohedral phases close to MPB. The electrical properties of prepared samples regularly changed with Ba content, which is closely related to the distribution of rhombohedral and tetragonal phases. The prepared sample near MPB exhibited the largest dielectric constant and the excellent piezoelectric properties (the maximal measuring field reached 78 kV/cm and the piezoelectric constant d 33 = 151pC/N).  相似文献   

16.
The piezoelectric properties of (1?x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics were reported and their piezoelectric properties reach extreme values near the MPB (about x?=?0.06). The X-ray analysis of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics for all compositions exhibited a pure perovskite structure without any secondary phase. Within a certain ratio of contents, the co-doped ceramics enhanced piezoelectric coefficient (d 33 ), lowered the dielectric loss, and increased the sintered density. The temperature dependence of relative dielectric permittivity (K 33 T ) reveals that the solid solutions experience two phase transitions, ferroelectric to anti-ferroelectric and anti-ferroelectric to relaxor ferroelectric, which can be proven by P-E hysteresis loops at different temperatures. In addition, the specimen containing 0.04/0.01 wt.% CaO/MnO showed that the coercive field E c was a minimum value of 26.7 kV/cm, while the remnant polarization P r was a maximum value of 38.7 μC/cm2, corresponding to the enhancement of piezoelectric constant d33 of 179 pC/N, electromechanical coupling factor k p of 37.3%, and relative dielectric permittivity K 33 T of 1137. (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics co-doped with CaO/MnO were considered to be a new and promising candidate for lead-free piezoelectric ceramics owing to their excellent piezoelectric/dielectric properties, which are superior to an un-doped BNBT system.  相似文献   

17.
MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 lead-free piezoelectric ceramics were prepared by conventional solid-state reaction process and the effect of MnO2 addition on the pyroelectric, piezoelectric and dielectric properties were studied. The experiment results showed that the pyroelectric, piezoelectric, and dielectric properties strongly depended on MnO2 addition in the (Na0.82 K0.18)0.5Bi0.5TiO3 ceramics. Excellent electrical properties were obtained in (Na0.82 K0.18)0.5Bi0.5TiO3 with 0.8?mol% MnO2. The large dielectric loss of pure BNT ceramics was significantly reduced, the piezoelectric constant was improved, and it also showed excellent pyroelectric properties when compared with other lead free ceramics, with pyroelectric coefficient p?=?17?×?10?4?C/m2K and figure of merit F d ?=?6.56?×?10?5?Pa?0.5. With these outstanding pyroelectric properties, the 0.8?mol% MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 ceramic can be a promising material for pyroelectric sensor applications in future.  相似文献   

18.
A site deficient Bi doped BaTiO3 ceramic with general formula Ba1-xBi2x/3TiO3 (x?=?0.00, 0.01, 0.025) is prepared by solid state reaction route. The phase formation and structural property of all compositions are studied by X-Ray Diffraction pattern. The pattern reports single phase tetragonal crystal system with space group of P4mm. The XRD study also reveals that bismuth (Bi) replaces ??A?? site (Ba) of the BaTiO3 pervoskite. The surface morphology of the sintered pellets is studied by scanning electron microscopy which shows a decrease in grain size with an increase in Bi concentration. The temperature and frequency dependent dielectric behaviors of the compositions are studied to show the effect of Bi ion on the ??A?? (Ba) site of BaTiO3 perovskite. The dielectric constant decreases and transition temperature increases with increase in Bi concentration. Substitution of Bi ion induces diffuse ferroelectric behavior and the degree of diffuseness increases with increase in doping concentration. The ferroelectric behavior is also confirmed by the P-E loop study.  相似文献   

19.
This paper outlines measurement and analysis methodologies created for determining the structural responses of electroceramics to an electric field. A sample stage is developed to apply electric fields to ceramic materials at elevated temperatures during neutron diffraction experiments. The tested voltages and temperatures range from ?20 kV to +20 kV and room temperature to 200 °C, respectively. The use of the sample environment for measuring the response of ferroelectric ceramics to an electrical stimulus is demonstrated on the instrument Wombat, a monochromatic neutron diffractometer employing a curved positive sensitive detector. Methodologies are proposed to account for the geometrical effects when vector fields are applied to textured materials with angularly dispersive detector geometries. Representative results are presented for the ferroelectric (Bi1/2Na1/2)TiO3-6%BaTiO3 (BNT-6BT) which show both phase transformation and ferroelectric domain texturing under the application of an electric field. This experimental and analysis approach is well suited for time-resolved measurements such as stroboscopic and in situ studies on a variety of electro-active materials.  相似文献   

20.
We studied the effect of Bi4Ti3O12 (BiT) platelet addition in Bi0.5(Na0.75K0.25)0.5TiO3 (BNKT) ceramics by preparing two kinds of BNKT ceramics. One type of BNKT ceramic was fabricated by a conventional solid state reaction method (normal sample), while the other by addition of 15 wt% BiT platelets to BNKT powders (BiT-added sample). In the case of BiT-added BNKT ceramics, plate like grains were formed by the reaction of BiT platelets with Na2CO3, K2CO3, and TiO2 during the sintering process. The grain size of BiT-added BNKT ceramics was 10 times larger than that of normal BNKT ceramic. The piezoelectric strain and d33 values of BiT-added BNKT ceramics were 0.135% and 225 pm/V, respectively. These values were 35% higher than those of normal BNKT ceramics. The piezoelectric properties of BiT-added BNKT ceramics were enhanced by the higher domain activity due to a decrease in domain density at larger grain sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号