首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glasses in the Ge-S, Ge-As-Se, and Ge-As-Se-Te systems, doped with Si3N4, were melted after sealing under reduced pressure, and their crystallization behavior was examined using differential thermal analysis/differential scanning calorimetry and X-ray diffractometry. The effect of Si3N4 doping on the suppression of the crystallization of chalcogenide glasses was confirmed for all three systems and is attributed to the increased crosslinking upon substitution of the chalcogens by nitrogen atoms, presumably forming structural units that are similar to Ge3N4.  相似文献   

2.
The development of crystalline phases in lithium oxynitride glass-ceramics was examined, with particular emphasis placed on the effect of the nitrogen source (AlN or Si3N4) on the formation and stability of a β-quartz solid-solution ( ss ) phase. Oxynitride glasses derived from the Li-Si-Al-O-N system were heat-treated at temperatures up to 1200°C to yield glass-ceramics in which β-quartz( ss ) and β-spodumene( ss ) of approximate composition Li2OAl2O34SiO2 formed as major phases and in which X-phase (Si3Al6O12N2) and silicon oxynitride (Si2N2O) were present as minor phases. The nitrogen-containing β-quartz( ss ) phase that was prepared with AlN was stable at 1200°C; however, the use of Si3N4 as the nitrogen source was significantly less effective in promoting such thermal stabilization. Lattice parameter measurements revealed that AlN and Si3N4 had different effects on the crystalline structures, and it was proposed that the enhanced thermal stability of the β-quartz( ss ) phase that was prepared with AlN was due to both the replacement of oxygen by nitrogen and the positioning of excess Al3+ ions into interstitial sites within the β-quartz( ss ) crystal lattice.  相似文献   

3.
Oxidized amorphous Si3N4 and SiO2 powders were pressed alone or as a mixture under high pressure (1.0–5.0 GPa) at high temperatures (800–1700°C). Formation of crystalline silicon oxynitride (Si2ON2) was observed from amorphous silicon nitride (Si3N4) powders containing 5.8 wt% oxygen at 1.0 GPa and 1400°C. The Si2ON2 coexisted with β-Si3N4 with a weight fraction of 40 wt%, suggesting that all oxygen in the powders participated in the reaction to form Si2ON2. Pressing a mixture of amorphous Si3N4 of lower oxygen (1.5 wt%) and SiO2 under 1.0–5.0 GPa between 1000° and 1350°C did not give Si2ON2 phase, but yielded a mixture of α,β-Si3N4, quartz, and coesite (a high-pressure form of SiO2). The formation of Si2ON2 from oxidized amorphous Si3N4 seemed to be assisted by formation of a Si–O–N melt in the system that was enhanced under the high pressure.  相似文献   

4.
A new method for preparing high bending strength porous silicon nitride (Si3N4) ceramics with controlled porosity has been developed by using pressureless sintering techniques and phosphoric acid (H3PO4) as the pore-forming agent. The fabrication process is described in detail and the sintering mechanism of porous ceramics is analyzed by the X-ray diffraction method and thermal analysis. The microstructure and mechanical properties of the porous Si3N4 ceramics are investigated, as a function of the content of H3PO4. The resultant high porous Si3N4 ceramics sintered at 1000°–1200°C show a fine porous structure and a relative high bending strength. The porous structure is caused mainly by the volatilization of the H3PO4 and by the continous reaction of SiP2O7 binder, which could bond on to the Si3N4 grains. Porous Si3N4 ceramics with a porosity of 42%–63%, the bending strength of 50–120 MPa are obtained.  相似文献   

5.
Silicon nitride (Si3N4) was synthesized by a selective combustion reaction of silicon powder with nitrogen in air. The α/β-Si3N4 ratio of the interior product could be tailored by adjusting the Si3N4-diluent content in the reactant mixtures. The synthetic β-Si3N4 showed a well-crystallized rod-like morphology. Mechanical activation greatly enhanced the reactivity of silicon powder, and the slow oxidation of silicon at the sample surface promoted the combustion reaction in air. The formation mechanism of Si3N4 was analyzed based on a proposed N2/O2 diffusion kinetic model, and the calculated result is in good agreement with the experimental phenomenon.  相似文献   

6.
Silicon nitride particle-reinforced silicon nitride matrix composites were fabricated by chemical vapor infiltration (CVI). The particle preforms with a bimodal pore size distribution were favorable for the subsequent CVI process, which included intraagglomerate pores (0.1–4 μm) and interagglomerate pores (20–300 μm). X-ray fluorescence results showed that the main elements of the composites are Si, N, and O. The composite is composed of α-Si3N4, amorphous Si3N4, amorphous SiO2, and a small amount of β-Si3N4 and free silicon. The α-Si3N4 transformed into β-Si3N4 after heat treatment at 1600°C for 2 h. The flexural strength, dielectric constant, and dielectric loss of the Si3N4(p)/Si3N4 composites increased with increasing infiltration time; however, the pore ratios decreased with increasing infiltration time. The maximum value of the flexural strength was 114.07 MPa. The dielectric constant and dielectric loss of the composites were 4.47 and 4.25 × 10−3, respectively. The present Si3N4(p)/Si3N4 composite is a good candidate for high-temperature radomes.  相似文献   

7.
Thermogravimetry, differential thermal analysis, mass spectrometry, and X-ray diffractometry were used to study the reaction process of the in situ reaction between Si3N4, B4C, and carbon for the synthesis of silicon carbide–boron nitride composites. Atmospheres with a low partial pressure of nitrogen (for example argon + 5%–10% nitrogen) seemed to inhibit denitrification and also maintain a high reaction rate. However, the reaction rate decreased significantly in a pure nitrogen atmosphere. The experimental mass spectrometry results also revealed that B4C in the Si3N4–B4C–C system inhibited the reaction between Si3N4 and carbon and, even, the decomposition of Si3N4. The present results indicate that boron could be a composition stabilizer for ceramic materials in the Si-N-C system used at high temperature.  相似文献   

8.
The tribological behavior of Mo5Si3-particle-reinforced silicon nitride (Si3N4) composites was investigated by pin-on-plate wear testing under dry conditions. The friction coefficient of the Mo5Si3–Si3N4 composites and Si3N4 essentially decreased slowly with the sliding distance, but showed sudden increase for several times during the wear testing. The average friction coefficient of the Si3N4 decreased with the incorporation of submicrometer-sized Mo5Si3 particles and also as the content of Mo5Si3 particles increased. When the Mo5Si3–Si3N4 composites were oxidized at 700°C in air, solid-lubricant MoO3 particles were generated on the surface layer. Oxidized Mo5Si3–Si3N4 composites showed self-lubricating behavior, and the average friction coefficient and wear rate of the oxidized 2.8 wt% Mo5Si3–Si3N4 composite were 0.43 and 0.72 × 10−5 mm3 (N·m)−1, respectively. Both values were ∼30% lower than those for the Si3N4 tested in an identical manner.  相似文献   

9.
Commercial-grade Si3N4–TiN composites with 0, 10, 20, and 30 wt% TiN content have been characterized. Submicrometer grain-size Si3N4 was reinforced with fine TiN grains. Density, Young's modulus, coefficient of thermal expansion, and fracture toughness increased linearly with TiN content. Increased strength was observed in the Si3N4+20 wt% TiN, and Si3N4+30 wt% TiN composites. Fractography was used to characterize the different types of fracture origins. Improvements in toughness and strength are due to residual stresses in the Si3N4 matrix and the TiN particles. A threefold improvement in dry wear resistance of the Si3N4+30 wt% TiN composite over the Si3N4 matrix was observed.  相似文献   

10.
The influence of phase formation on the dielectric properties of silicon nitride (Si3N4) ceramics, which were produced by pressureless sintering with additives in MgO–Al2O3–SiO2 system, was investigated. It seems that the difference in the dielectric properties of Si3N4 ceramics sintered at different temperatures was mainly due to the difference of the relative content of α-Si3N4, β-Si3N4, and the intermediate product (Si2N2O) in the samples. Compared with α-Si3N4 and Si2N2O, β-Si3N4 is believed to be a major factor influencing the dielectric constant. The high-dielectric constant of β-Si3N4 could be attributed to the ionic relaxation polarization.  相似文献   

11.
Detailed microstructural analysis of a 10 mol% Y2O3 fluxed hot-pressed silicon nitride reveals that, in addition to the yttrium-silicon oxynitride phase located at the multiple Si3N4 grain junctions, there is a thin boundary phase 10 to 80 Å wide separating the silicon nitride and the oxynitride grains. Also, X-ray microanalysis from regions as small as 200 Å across demonstrates that the yttrium-silicon oxynitride, Y2Si(Si2O3N4), phase can accommodate appreciable quantities of Ti, W, Fe, Ni, Co, Ca, Mg, Al, and Zn in solid solution. This finding, together with observations of highly prismatic Si3N4 grains enveloped by Y2Si(Si2O3N4), suggests that densification occurred by a liquid-phase "solution-reprecipitation" process.  相似文献   

12.
We have performed molecular dynamics simulations of amorphous Si3N4 containing boron (Si-B-N). We have examined short-range atomic arrangements and self-diffusion constants of amorphous Si-B-N systems with various boron contents. Our simulations show that boron atoms are threefold coordinated by nitrogen atoms and that nitrogen atoms are bonded to both silicon and boron atoms in the amorphous network of Si-B-N. Also, the self-diffusion constant of nitrogen in Si-B-N is much decreased compared with that in amorphous Si3N4. This suggests that boron is important in decreasing the mobility of atoms in amorphous Si-B-N, which may explain the improved thermal stability of amorphous Si-B-N relative to amorphous Si3N4 observed experimentally.  相似文献   

13.
The high-temperature flexural strength of hot-pressed silicon nitride (Si3N4) and Si3N4-whisker-reinforced Si3N4-matrix composites has been measured at a crosshead speed of 1.27 mm/min and temperatures up to 1400°C in a nitrogen atmosphere. Load–displacement curves for whisker-reinforced composites showed nonelastic fracture behavior at 1400°C. In contrast, such behavior was not observed for monolithic Si3N4. Microstructures of both materials have been examined by scanning and transmission electron microscopy. The results indicate that grain-boundary sliding could be responsible for strength degradation in both monolithic Si3N4 and its whisker composites. The origin of the nonelastic failure behavior of Si3N4-whisker composite at 1400°C was not positively identified but several possibilities are discussed.  相似文献   

14.
The cold-compaction densification behavior of silicon nitride (Si3N4) ceramic powder was analyzed using two models: the Shima model and the Cam-Clay model. Triaxial-compression experimental data were used to evaluate these two models. Shima models that used Si3N4 matrix material with different yield stresses were discussed. It is clear that the Cam-Clay model can effectively simulate the cold-compaction densification behavior of Si3N4 ceramic powder. The Shima model that used a very high yield stress for the Si3N4 matrix material slightly overestimated the experimental data, and the Shima model that used the actual yield stress for Si3N4 matrix material largely overestimated that data.  相似文献   

15.
Sintering additives were incorporated into Si3N4 by attrition and ball milling using both Si3N4 and Al2O3 media. Dispersion of Y2O3 was observed by backscattered electron imaging. Attrition milling for only 15 min using an Si3N4 medium, was equivalent to 24 h of ball milling. Minimal contamination by the Si3N4 was encountered. [Key words: silicon nitride, yttria, comminution, sintering, dispersion.  相似文献   

16.
A hot-pressing technique was used for the further densification of reaction-bonded silicon nitride-molybdenum disilicide and silicon nitride-tungsten silicide (Si3N4-MoSi2 and Si3N4-WSi2, respectively) compacts that were prepared via a presintering step and a nitriding process from silicon-molybdenum or silicon-tungsten powders. After hot pressing was performed at 1650°C (25 MPa for 1 h), most of the alpha-Si3N4 that formed during the reaction-bonding process was transformed to β-Si3N4 and, moreover, a very small amount of Mo5Si3 (W5Si3) was formed in addition to MoSi2 (WSi2). Three- and four-point bend tests were performed at room temperature (25°C), 1000°C, 1200°C, and 1400°C. The bend strength of the Si3N4-WSi2 composite increased slightly from room temperature up to 1000°C, whereas the Si3N4-MoSi2 composite showed a more-pronounced increase up to 1200°C. Microstructural analysis was performed on the fracture surfaces of both composites that were tested at different temperatures.  相似文献   

17.
Recently, the viscosity of a predominantly amorphous silicon carbonitride (Si1.7C1.0±0.1N1.5) alloy with an apparent glass-transition temperature ( T g) of 1400°–1500°C was studied. In this study, the creep behavior of silicoboron carbonitride (Si2B1.0C3.4N2.3), which seems to have a T g value of >1700°C, was examined. Both materials exhibited a three-stage creep behavior. In stage I, the creep rate declined, because of densification. In stage II, the strain rate approaches a steady state. In stage III, it resumes a declining strain rate, which ultimately decreased below the measurement limit of the system. At 1550°C in stage II, the viscosity of silicoboron carbonitride was six orders of magnitude higher than that of fused silica. Among the Si-C-N ceramics, only chemical-vapor-deposited and reaction-bonded silicon carbides seem to have greater creep resistance than the silicoboron carbonitrides at temperatures >1550°C.  相似文献   

18.
The existence of compounds between Si3N4-CeO2 and Si3N4-Ce2O3 was investigated for firing temperatures of 1600° to 1700°C. The two new monoclinic compounds found were Ce2O3·2Si3N4 with lattice parameters a = 16.288, b = 4.848, and c =7.853 Å and β=91.54° and Ce4Si2O7N2 with lattice parameters a = 10.360, b = 10.865, and c =3.974 Å and β=90.33°. Cerium orthosilicate (Ce 4.67 (SiO4)3O) is present during firing as a glassy intermediate phase which promotes sintering and densification and then reacts with silicon nitride to form cerium silicon oxynitrde (CeSiO2N).  相似文献   

19.
Mechanical Properties of Joined Silicon Nitride   总被引:1,自引:0,他引:1  
A technique is described to join Si3N4 ceramics using oxide glasses. The technique involves a glazing step, followed by a pressureless reaction treatment of 30 to 60 min at 1575° to 1650°C. Reactions between the glasses and Si3N4 are reported. Important events are dissolution of Si3N4 and the growth of Si2N2O crystals into the joint. The strength of joined bars depends on joint thickness. Two strength regimes are identified, and two corresponding fracture mechanisms are described. A maximum strength of ∼460 MPa is achieved for a joint thickness of ∼30 μm.  相似文献   

20.
Advanced sintering techniques for consolidation of Si3N4 powders in the presence of an oxygen-rich liquid phase(s) require high temperatures and usually high nitrogen pressures. A stability diagram is constructed for Si3N4 as a function of the partial pressures of nitrogen (PN2) and silicon (PSi). High PN2 (20 to 100 atm) increases the stability of Si3N4 and the oxygen-rich liquid phase by reducing the PSi and PSi0, respectively. The region of high sinterability is outlined for submicrometer Si3N4 powders containing 7 wt% BeSiN2 and 7 wt% SiO2 as densification aids .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号