首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
为了探究典型盐粉及盐溶液对瓦斯爆炸的抑制规律,在自行搭建的不锈钢火焰加速管道内开展了NaCl、KCl粉末及NaCl溶液抑制甲烷/空气预混气体爆炸试验,研究了不同粉末铺设面密度、铺设长度、铺液浓度、铺液长度对甲烷爆燃火焰传播的抑制效果及其抑爆机理。结果表明,铺设NaCl、KCl盐粉对甲烷爆燃火焰传播具有抑制作用,爆燃压力及火焰平均传播速度均低于空白对照组|当NaCl、KCl盐粉的铺设面密度为150mg/cm2时,两种盐粉的火焰平均传播速度均衰减最大|随着粉末铺设长度的增加,对火焰传播抑制和促进作用均增强,KCl粉末的抑制作用相对于NaCl粉末更明显。布设NaCl溶液,爆燃火焰压力低于空白组。随着NaCl浓度的增加,爆燃压力的变化不明显,火焰平均传播速度呈降低趋势。溶液铺设长度增加,火焰平均传播速度、爆燃峰值压力逐渐降低。  相似文献   

2.
在自主搭建的中尺度爆炸管道上,构建超高速激光纹影测试系统,探究不同喷射位置和压力下N2和CO2抑制瓦斯/空气预混气体爆燃火焰传播特性。结果表明:在惰性气体抑制瓦斯/空气预混气体爆燃实验中,随着喷射压力的逐步增强,火焰传播速度呈现出先增大后减小的趋势,火焰形态也由指尖状逐渐拉伸变形,中部突出部分变小直至呈现近平面状;近点火端喷射CO2时比远离点火端喷射的最高火焰传播速度降低20.79%,喷射N2时降低20.25%,近点火端喷射CO2比远点火端的最低火焰速度低9.68%,喷射N2时降低12.86%;对比2种阻燃抑爆气体,近点火端喷射CO2比喷射N2的最高火焰传播速度低21.78%,最低速度比N2低1.82%;远点火端喷射CO2时的最高火焰速度比N2低21.25%,最低火焰速度比N2低5.27%。  相似文献   

3.
为揭示管道内甲烷-煤尘预混湍流特征及爆炸火焰传播过程,构建了竖直管道内甲烷-煤尘预混扩散及爆炸物理数学模型;基于流体力学及传热-传质理论,对管道内甲烷-煤尘扩散特征和爆炸过程进行了数值模拟。划分了管道内气固两相扩散特征阶段,分析了初始真空度和进气压力对扩散湍流强度的影响规律;研究了煤尘粒径、浓度及甲烷浓度对爆炸最大压力及最大爆炸压力上升速率的影响特征;揭示了管道内甲烷-煤尘预混爆炸过程中火焰传播特征及爆炸机制。结果表明:煤尘颗粒在竖直管道罐内扩散可分为快速注入、减速分散、稳定和沉降4个连续阶段,初始真空度及进气压力对湍流强度均有影响;爆炸过程中,不同时刻下管道整体爆炸压力场基本均匀分布。甲烷浓度、煤尘浓度及粒径与最大爆炸压力P_(max)及最大爆炸压力上升速率(dP/dt)_(max)均呈现二次函数关系;不同时刻下爆炸火焰结构及火焰高度、火焰传播速度的模拟与试验结果具有较好的一致性,火焰结构呈现"月牙-S-下凹月牙-指尖"传播至爆炸结束。温度分布不均,高温区集中在管道上部和中下部。火焰传播速度先增大后减小,后期呈现震荡性特征。  相似文献   

4.
《煤矿安全》2021,52(5):66-71
为了得到煤矿井下瓦斯/空气预混气体爆燃流场波系演化过程,获取结构内部"看得到"的图像,重新认识激波和火焰之间的耦合关系、障碍物加速火焰的激励效应、惰性介质阻燃剂抑制爆燃的本质,在已建成的中尺度爆炸激波管道上进一步搭建超高速激光纹影系统,并提出"M"型、"Z"型和直线型3种光路布置方式的瓦斯爆燃流场测试方案,以代替传统的压力火焰传感器测试手段,为获取瓦斯/空气预混气体爆燃时激波的演变过程和火焰的微观结构流场提供新思路。  相似文献   

5.
《煤矿安全》2016,(7):27-29
为研究地面放空管道内瓦斯爆炸的转播特性,模拟地面放空管道内瓦斯的爆炸环境,对管道内气体的爆炸极限、爆炸压力和爆炸火焰传播速度等进行实验分析。结果表明,在实验管道内,爆炸冲击波冲量在爆炸初期逐渐增大,达到最大值后,又逐渐减小,在靠近实验管道开口位置,冲量又突然增大。爆炸压力随实验管道的延长而增大,在靠近实验管道的开口端达到最大值。瓦斯浓度低于9%时,爆炸火焰传播速度随浓度降低而减小;瓦斯浓度高于11%时,火焰传播速度随浓度增大而减小。  相似文献   

6.
分别就长方体、三棱柱和圆柱3种立体结构障碍物的不同放置方式,对甲烷预混火焰在管道内传播的速度和超压的影响进行了研究。研究结果表明:不同立体结构障碍物的放置方式对火焰传播速度和超压的影响程度不同。对于火焰传播速度,长方体影响较小,三棱柱和圆柱影响较大。对于管道中峰值超压,不同放置方式之间导致的差异不大,在33%范围内。对于同一阻塞比立体结构障碍物,当放置于管道中,火焰经过的障碍物表面面积越大,对火焰传播速度和管道超压影响也越大。当障碍物使流通管道分叉时,对火焰传播影响将更大。对于同一立体结构障碍物,火焰传播速度越快,其导致的管道超压也越大,而不同立体结构障碍物火焰传播速度和超压之间没有必然联系。  相似文献   

7.
为了进一步探究不同煤种参与的瓦斯煤尘爆炸的传播规律,选取3种具有代表性的煤尘在自制的半封闭管道内进行试验,主要研究了瓦斯煤尘爆炸火焰传播速度、火焰面发光强度和最大爆炸压力。研究结果表明:瓦斯煤尘爆炸的最大爆炸压力和火焰传播速度皆随着煤尘浓度的增加呈先上升后下降的趋势;存在着一个最佳的瓦斯浓度和煤尘浓度,使火焰传播速度达到最大,发光强度也达到最大;火焰传播速度、最大爆炸压力和爆炸产生的发光强度都是按褐煤、烟煤、无烟煤依次降低。  相似文献   

8.
在Φ700 mm管道中进行了瓦斯爆炸压力峰值、火焰传播速度的试验研究,对不同点火能量条件下的瓦斯—空气混合气体爆炸试验研究结果表明:爆炸压力峰值在沿管道的传播过程中,从爆源点附近是先增大后减小,然后再逐渐增大的,且最大压力峰值出现在出口附近;火焰传播速度随着传播距离的增大而逐渐增大;点火能量对爆炸压力峰值、火焰传播速度等都有重要影响。这些研究结果为煤矿井下隔抑爆装置和瓦斯输送管道隔抑爆装置的研制及安装技术规范的制订奠定了理论基础,也为煤矿瓦斯爆炸事故调查分析提供了理论依据。  相似文献   

9.
为了更好地研究抽放管路中瓦斯爆炸特征及火焰传播规律,通过搭建试验平台的方法模拟直管、分叉管路中低浓度瓦斯爆炸特征及燃烧规律,实验结果表明:在直管道爆炸实验过程中,其出口附近显现最大压力峰值,且传播的距离越长,火焰传播速度越快;在分叉管道爆炸实验过程中,每一个分叉点即为一处扰动源,该扰动源主要增大了气流湍流度,螺旋环对管内气流产生较大扰动,气流流动的湍流程度增大,爆炸波强度随之快速增大。  相似文献   

10.
管道内瓦斯爆炸传播试验研究   总被引:9,自引:0,他引:9  
为了研发低浓度瓦斯抽放系统的安全设备,分别在DN500 mm和DN700 mm的试验管道内进行了瓦斯爆炸传播试验.通过动态信号综合测试系统采集了爆炸火焰和压力波的试验数据.试验结果表明:管道内瓦斯爆炸压力波峰值与传播距离呈二次函数关系,爆炸火焰到达时间与传播距离呈对数函数关系,且火焰传播速度随传播距离的增长而增大,管道直径对爆炸的传播有明显影响.  相似文献   

11.
超细水雾-多孔材料协同抑制瓦斯爆炸实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
余明高  刘梦茹  温小萍  裴蓓 《煤炭学报》2019,44(5):1562-1569
为探究超细水雾与多孔介质在协同作用下对多孔介质淬熄效果以及多孔介质上游爆炸超压的影响,自行设计并搭建了尺寸为80 mm×80 mm×1 000 mm透明有机玻璃瓦斯爆炸管道实验平台,研究超细水雾质量分数、多孔材料孔径及孔隙率对9. 5%甲烷压的协同抑制效果。实验结果表明,改变超细水雾质量分数、多孔材料孔径以及孔隙率,在多孔材料上游,最大火焰传播速度和最大爆炸超压有着显著变化,随着超细水雾质量分数增加,火焰锋面传播速度峰值和爆炸超压逐渐减小,爆炸超压峰值出现时间随之缩短,而随着孔径的减小,火焰锋面传播速度也逐渐减小,压力衰减率明显增加。同时,超细水雾和多孔材料的组合方式对瓦斯爆炸具有耦合抑制作用,管道内通入超细水雾可吸收反应区大量热能,降低反应速率与火焰传播速度,此外多孔材料的存在吸收了部分前驱冲击波,破坏正反馈机制,因此两者协同抑制优于单一抑制效果。放置在管道中的多孔材料使得传播火焰淬熄,且添加的超细水雾降低了多孔材料上游的超压,但是一旦多孔介质淬熄失败,火焰湍流加剧,可能会导致更为严重的事故发生。此外,与9. 5%甲空气预混气相比,孔隙率为87%,孔隙密度为20 PPI和超细水雾质量浓度为1 453. 1 g s,下降比例达到44. 23%,且多孔材料上游的最大爆炸超压为6. 13 kPa,降低了40. 62%,抑制效果最明显。  相似文献   

12.
工业容器气体泄爆实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
黄甄  陈先锋  董利辉  李振 《煤炭学报》2013,38(Z2):388-392
为了给降低受限空间爆炸事故的发生率提供依据,揭示约束条件下甲烷-空气预混气体爆炸动力学过程,研究气体爆炸时压力与速度相互作用的规律,利用小尺寸爆炸实验平台,采用唯象法捕捉气体爆炸过程中的动态影像,宏观上揭示火焰传播的变化特征,并利用高速摄影、纹影系统直观地记录火焰传播的瞬态过程以及层流向湍流转变的过程。通过实验研究了不同泄压口比率和不同泄压膜强度时的泄爆规律。实验数据表明,受限环境中爆炸压力不仅决定火焰的传播速度,还影响火焰的结构变化。  相似文献   

13.
毕明树  李江波 《煤炭学报》2010,35(8):1298-1302
在1.2 m长竖直爆炸管内对不同初始条件下的甲烷-煤粉混合物进行了弱点火火焰传播实验。分别考察了甲烷浓度、煤粉浓度、煤粉粒径以及点火延迟时间对复合爆炸火焰传播特性的影响。结果表明,煤粉的存在使得纯甲烷在空气中爆炸火焰传播速度显著增大,最大火焰传播速度出现在距离点火端0.425 m(长径比等于6)处;火焰传播至长管末端壁面后,爆炸压力达到最大值;甲烷浓度越接近化学当量比,火焰传播速度越快;火焰传播速度随煤粉浓度和点火延迟时间的变化趋势为先增大后减小,最佳煤粉浓度为500 g/m3,最佳点火延迟时间为500 ms;在一定粒径范围内,火焰传播速度随着煤粉粒径的增大而减小。  相似文献   

14.
采用流体力学软件FLUENT对不同障碍物情况下巷遭瓦斯爆炸过程进行数值模拟,研究了障碍物对爆炸传播的影响。模拟结果清晰地显示了巷道瓦斯爆炸火焰传播过程,并且表明巷道障碍物的存在会产生湍流现象加速火焰传播,增大瓦斯爆炸的危害,因此巷道中应尽量减少不必要的障碍物存在。  相似文献   

15.
The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.  相似文献   

16.
在实验的基础上对瓦斯爆炸传播过程中火焰温度和传播速度间的相互关系进行了研究,并分析了火焰温度诱导火焰加速的机理。研究结果表明:火焰温度和传播速度的变化趋势是一致的,但火焰温度对传播速度的影响较为明显,随着温度的升高,火焰传播速度不断增大。分析认为高温促进甲烷的分解产生更多的自由基,且自由基在高温条件下易于扩散,反应更为剧烈是火焰加速的诱因。  相似文献   

17.
开展了施加超细惰性SiO_2及活性NaHCO_3粉体对甲烷/空气预混物爆炸层流火焰传播影响的研究,利用高速摄像及纹影系统为主要手段,探究了火焰微观结构及全程火焰传播速度的变化,以及爆炸压力增长进程等参数的变化趋势。结果表明,添加少量SiO_2超细粉体后,火焰传播得以强化,粉体施加量为50 g/m~3量级时,火焰传播速度增长近1倍,提高粉体浓度,其物理作用的抑制效能方能逐步体现,粉体施加量提高到150 g/m~3时,对火焰扰动导致的燃烧强化与吸热抑制作用可相抵消。而施加超细NaHCO_3粉体后,传播速度得以明显抑制,火焰阵面被分割成蜂窝状,抑制程度与施加量成正比,当NaHCO_3的质量浓度达到150 g/m~3时,能够将爆炸火焰完全抑制。施加超细NaHCO_3粉体后,爆炸压力的增长进程明显减缓,而施加超细惰性SiO_2对爆炸压力的抑制效能并不显著。  相似文献   

18.
The flame propagation of methane-air mixture with various methane concentrations was experimentally investigated at venting flame acceleration tube with quadrate cross section under different obstacles presented. The flame shape and propagation speed was observed by high-speed color video camera. The explosion pressure was determined by piezoelectricity pressure transducers. The results are: The flame propagates in the shape of a hemisphere before the flame reaches the first baffle and flame propagation speed is not more than 15 m/s. When the flame propagates across the baffle, the flame begins to accelerate due to turbulence induced by obstacle. Blockage ratio has relatively greater effect on the flame propagation speed than repeated baffle number does. The flame propagation speed and the pressure at different location along the tube are maximum when methane-air mixture is near the chemical stoichoimetric ratio. The pressure increases with the distance from ignition end at first and the maximum pressure was obtained at the middle of tube, but the pressure decreases and again increases at venting end.  相似文献   

19.
为研究狭缝对瓦斯爆燃火焰的阻燃机理,在单步不可逆化学反应和EBU-Arrhenius燃烧模型基础上,对不同火焰初始速度和狭缝间距的瓦斯爆燃火焰动态传播规律及淬熄特性进行数值模拟。数值结果表明,在火焰初始速度小于167 m/s且狭缝间距小于1.2 mm条件下,瓦斯爆燃火焰在狭缝中均有可能发生淬熄。淬熄距离与火焰初始速度及狭缝间距有关,即初始火焰速度或狭缝间距越小,淬熄距离将随之减小,火焰越容易被阻燃。实验验证表明,数值模拟结果与实验数据吻合较好,但是当火焰初始速度增大时计算误差随之增大,其原因是由于湍流强度增大使淬熄温度发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号