首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The grain-growth behavior of Al2O3 compacts with small contents (≤10 wt%) of various liquid-forming dopants was studied. Equiaxed and/or elongated grains were observed for the following dopants: MgO, CaO, SiO2, or CaO + TiO2. The platelike grains, defined as the abnormal grains larger than 100 μm with an aspect ratio ≥5 and with flat boundaries along the long axis, were observed when the boundaries were wet with the liquid phase and the codoping satisfied two conditions of size and valence. These dopings were Na2O + SiO2, CaO + SiO2, SrO + SiO2, or BaO + SiO2. However, an addition of MgO to the Al2O3 doped with CaO + SiO2 resulted in the change of grain shape from platelike to equiaxial. Equiaxed grains were also observed for the MgO + SiO2 doping, indicating that two conditions were necessary but not sufficient to develop the platelike grains. The fast growth rate of the platelike grains was explained by an increased interfacial reaction rate due to the codopants. AT the same time the codopants made the basal plane, which appeared as the flat boundaries, the lowest energy plane. The appearance of the platelike grains was favored in compacts with a small grain size and with a narrow size distribution at the onset of abnormal grain growth. Accordingly, the use of starting powders with a small particle size and narrow size distribution, smaller amounts of dopings, and high sintering temperature resulted in an increased number of the platelike grains.  相似文献   

2.
Pure Al2O3 powder compact sintered at 1400°C after adding 100 mol ppm of SiO2 shows grain boundaries that are flat, even across the triple junctions. TEM observations show that these flat grain boundaries are parallel to the basal planes of the grains on one side. These flat grain boundaries must be singular. At such a low SiO2 concentration and a low temperature, it is very unlikely that any liquid phase is present at these grain boundaries to cause such flat boundary shapes.  相似文献   

3.
Alumina sintered with 5 wt% anorthite at 1620°C for 48 h has grains with flat boundaries and a size distribution representing abnormal grain growth. TEM observations of the grain triple junctions show flat grain surfaces, some of which are the (0001), ([Onemacr]012), and (1[Onemacr]01) planes. HRTEM observations confirm these surfaces to be atomically flat and hence singular. When sintered further after embedding in MgO powder, the {0001} and { 01[Onemacr]2} planes remain flat, but curved surface segments also appear. These curved surface segments are confirmed to be atomically rough by HRTEM. They are connected to the flat segments with discontinuously changing slopes. Thus, when MgO is added, the singular and rough surface phases coexist.  相似文献   

4.
Trace SiO2 and MgO additive distributions in sintered alumina have been studied using high-resolution scanning secondary ion mass spectrometry (SIMS). When doped with each additive individually, evidence is seen for both strong silicon segregation to grain boundaries ( C gb/ C grain similar/congruent 300) in SiO2-doped alumina and strong magnesium segregation to grain boundaries ( C gb/ C grain similar/congruent 400) in MgO-doped alumina. When codoped with both SiO2 and MgO, segregation of both ions to grain boundaries is reduced by a factor of 5 or more over single doping. The additive concentrations increase proportionally in the grains, and both dopants become more uniformly distributed throughout the bulk. It is concluded that codoping with these additives increases their mutual bulk solid solubility and decreases their interfacial segregation over single doping. The beneficial effect of MgO additions in controlling microstructure development in alumina and improving corrosion resistance to aqueous HF stems from its ability to redistribute silicon ions from grain boundaries into the bulk.  相似文献   

5.
The alumina grains in liquid-phase-sintered (LPS) materials prepared from different commercial sources have a predominantly platelet morphology. Generally, the MgO:(CaO + BaO + Na2O + K2O) ratio in the chemical composition controls the morphology in LPS alumina that is 91–94 wt% pure. Within a given range of SiO2 content (i.e., 4.3–5.2 wt% in the chemical composition), a low MgO:(CaO + BaO + Na2O + K2O) ratio (i.e., <1.0) in the LPS compositions favors the formation of elongated grains, whereas ratios of >1.0 result in equiaxed grains. SiO2 contents outside the 4.3–5.2 wt% range favor the formation of elongated grains. A tendency to form platelike grains is observed for LPS alumina with a purity of 91–94 wt% when both the MgO:(CaO + BaO + Na2O + K2O) ratio and the SiO2 content are relatively low. The sintered density generally increases as the SiO2 content in the chemical composition decreases.  相似文献   

6.
Effect of CaO on the Thermal Conductivity of Aluminum Nitride   总被引:3,自引:0,他引:3  
The effect of CaO on the thermal conductivity of aluminum nitride pressureless sintered with 3 wt% Y2O3 as a sintering aid was investigated. Over the composition range of 0 to 2.0 wt% additions, CaO decreased the thermal conductivity of the sintered parts by 10%. CaO doping rendered the secondary oxide phases more wetting and thus with a greater tendency to penetrate along the grain boundaries. Furthermore, CaO segregation to the grain boundaries was observed even on those grain boundaries apparently free of secondary phases. These microstructural changes disrupted the connectivity of the high thermal conductivity AIN grains and were the main factors contributing to the decrease in the thermal conductivity of the ceramic parts. CaO additions to samples doped with SiO2 had the opposite effect, increasing the thermal conductivity. CaO removed SiO2 from the AIN grains and incorporated it into the oxide second phases, most likely through charge-compensating substitutions Ca2++ Si4+ for Y3+ and/or Al3+. Thus, AIN samples containing both SiO2 and CaO had higher thermal conductivity than those containing comparable amounts of SiO2 alone.  相似文献   

7.
In a given batch more than 30%–40% of polycrystalline, MgO-doped Al2O3 tubes were converted into single crystals of sapphire by abnormal grain growth (AGG) in the solid state at 1880°C. Most crystals grew 4–10-cm in length in tubes with wall thicknesses of 1/2 and 3/4 mm and outer diameters of 5 and 7 mm, respectively, and had their c -axes oriented ∼ 90° and 45° to the tube axis. Initiation of AGG was associated with low values of bulk MgO concentration near 50 ppm. The unconverted tubes did not develop centimeter-size crystals but instead exhibited millimeter-size grains. The different grain structures in converted and unconverted tubes may be related to nonuniform concentration of MgO in the extruded tubes. The growth front of the migrating crystal boundary was typically nonuniformly shaped, and the interface between the single crystal and the polycrystalline matrix was composed of many "curved" boundary segments indicative of classical AGG in a single-phase material. The average velocities of many migrating crystal boundaries were quite high and reached ∼1.5 cm/h. The average grain boundary mobility at 1880°C was calculated as 2 × 10−10 m3/(N·s), representing the highest value reported so far in Al2O3 and within a factor of 2.5 of the calculated intrinsic mobility. Under similar experimental conditions sapphire crystals did not grow when a codopant of CaO, La2O3, or ZrO2 was added in concentrations of several hundred ppm.  相似文献   

8.
MgO addition to 3 mol% Y2O3–ZrO2 resulted in enhanced densification at 1350°C by a liquid-phase sintering mechanism. This liquid phase resulted from reaction of MgO with trace impurities of CaO and SiO2 in the starting powder. The bimodal grain structure thus obtained was characterized by large cubic ZrO2 grains with tetragonal ZrO2 precipitates, which were surrounded by either small tetragonal grains or monoclinic grains, depending on the heat-treatment schedule.  相似文献   

9.
The faceting of alumina interfaces in the presence of a glass affects both grain growth and grain-boundary mobility during liquid-phase sintering. The geometry and movement of facets that form during this sintering process are expected to play an essential role in the development of the final microstructure, in particular, by their influence on the topology of the grain boundaries which ultimately control the properties of Al2O3 compacts. A new method for studying the interaction between Al2O3 and a glass has been developed. A thin sample of Al2O3 suitable for examination in a transmission electron microscope is prepared and examined and then reacted with SiO2 and CaO via the vapor phase. This experimental approach allows the faceting behavior of glass/Al2O3 interfaces to be studied systematically without introducing unnecessary complications during subsequent sample preparation. Faceting occurs almost exclusively on the (0001) and {1 1 02} planes. The interaction between glass and certain structured grain boundaries in alumina has been studied using polycrystalline thin films.  相似文献   

10.
Grain boundaries in pure alumina powder compacts sintered at 1400°C are smoothly curved, indicating that they have atomically rough structures. When these specimens are heat-treated at temperatures between 900° and 1100°C, a small fraction of the grain boundaries develop either hill-and-valley or kinked shapes with flat segments. Some of these flat boundary segments lie on the {011[Twomacr]} plane of one of the grain pairs. These grain boundaries thus appear to become singular at these temperatures. When a corundum crystal with a basal surface is sintered in alumina powder at 1400°C, all grain boundaries formed between the corundum basal surface and small grains, as well as those between the small grains, are smoothly curved, indicating their rough structure. When heat-treated at 900°C for 3 days, about 30% of the grain boundaries between the corundum basal surface and the small grains develop kinks with flat boundary segments, and some of these flat segments lie on the basal plane of the corundum. When heat-treated again at 1400°C, all grain boundaries are curved, indicating that they become reversibly rough. These observations show that at least some of the grain boundaries in alumina undergo roughening-singular transitions at temperatures between 900° and 1100°C.  相似文献   

11.
Microstructural morphology in A1203 containing trace amounts (∼0.25 vol%) of a silicate-based amorphous phase was studied, as a finction of MgO additions, using transmission electron microscopy. Incipient abnormal grains develop during hot-pressing of undoped Al2O3 powder and are characterized by a large aspect ratio (>3) and long basal plane {0001} facets. The facets are completely wet by a thin (∼3 nm) amorphous phase in contrast with grain ends, which appear to be devoid of an amorphous phase. The shape of the grains is believed to result from differences in mobility between clean (i.e., unwet) grain boundaries and intergranular films which are liquid at the firing temperature. Doping with trace additions of MgO (Mg/A1=250 ppm) results in smaller, more uniform grain structures. Many grains in the MgO doped material exhibit all the features of the incipient abnormal grains in the undoped material, with the exception of the large aspect ratio. It is concluded that the role of MgO in such a system is a grain-growth inhibitor and a microstructural stabilizer. It is proposed that the additive operates by reducing the mobility difference between clean (unwet) boundaries and grain boundaries wetted by thin amorphous films. It is believed the additive accomplishes this primarily by reducing the mobility of the clean grain boundaries via a solid-solution pinning mechanism.  相似文献   

12.
The crystallization behavior of a glass with a composition of 40 wt% 3CaO · P2O5−60 wt% CaO · MgO · 2SiO2 was investigated. The primary crystalline phase was apatite with a dendritic form and ellipsoidal shape. β-(3CaO · P2O5) and CaO · MgO · 2SiO2 were crystallized as samples heated to 990°C, and a three-layer structure was obtained. The development and morphology of this construction were explained by both the surface crystallization of the apatite and CaO · MgO · 2SiO2 and the bulk crystallization of apatite and the CaO · MgO · 2SiO2-β-(3CaO · P2O5) composite.  相似文献   

13.
A phenomenon of bilevel solubility was observed in a TiO2-doped (2.0 wt%) alumina with bimodal microstructure sintered in N2. Surface contributions to dopant signals in individual grains were identified and removed, using a spatially resolved energy dispersive spectroscopy analysis. Two levels of solubility, 1.005 ± 0.166 and 0.504 ± 0.082 mol% of TiO2 in Al2O3, were obtained for anisotropic and equiaxed grains, respectively. No grain size dependence of solubility was found, but segregation of SiO2 to boundaries with the anisotropic grains was observed. This phenomenon was explained by the incorporation of Ti3+ into the Al2O3 lattice during the abnormal grain growth caused by SiO2 liquid under a reducing atmosphere.  相似文献   

14.
Spinel, MgAl2O4, has been observed to form on sapphire during sapphire dissolution into CaO-MgO-Al2O3-SiO2 (CMAS) melts at 1450°. and 1550°C. Electron microprobe analysis was used to characterize the sapphire/melt interface for cases in which spinel did (indirect dissolution) or did not (direct dissolution) form on the sapphire during dissolution into CMAS melts. The concentrations of Al2O3, MgO, CaO, and SiO2 were determined as a function of position within the spinel reaction product and in the adjacent melt. The rate-limiting steps for direct and indirect sapphire dissolution into CMAS melts are discussed.  相似文献   

15.
Analytical Electron Microscopic Studies of Doped Dicalcium Silicates   总被引:1,自引:0,他引:1  
Dicalcium silicates having CaO/SiO2 molar ratios of 1.8 to 2.2 were sintered at 1450°C for 90 min with or without small quantities of dopants (K2O or Al2O3) and were air quenched. The microstructures of the fired samples were characterized using electron microscopy (SEM and TEM) and associated microanalytical techniques. There was no evidence for the existence of Ca1.8SiO3.8 or Ca2.2SiO4.2. Amorphous grain-boundary phases were observed between grains and as inclusions within the grains; the amounts decreased as CaO/SiO2 ratios increased. The compositions of the amorphous phases were always rich in dopants and had a CaO/SiO2 ratio close to that of wollastonite. High levels of Al2O3 were observed to enter the β-Ca2SiO4 grains under lime-rich conditions (CaO/SiO2= 2.2) up to a saturation level of about 3.0 wt%. Some additional crystalline phases were observed to form depending on stoichiometry and dopant level.  相似文献   

16.
Polycrystalline alumina specimens with and without MgO doping show smoothly curved grain boundaries after heat treatment at 1400°C indicating their rough structure. When heat-treated at 1400° and 1500°C for 24 h after packing in an alumina–YAG powder mixture, many grain boundaries (without any liquid phase) develop kinks of large and small scales as observed by scanning electron microscopy and transmission electron microscopy. The addition of Y2O3 at concentrations close to the solubility limit is thus shown to induce the grain boundary transition to singular structures.  相似文献   

17.
Hot-pressed yttrium disilicate ceramics have been characterized using analytical transmission electron microscopy (TEM). The microstructure consists of large grains of the γ phase of stoichiometric γ-Y2Si2O7 containing rounded glassy Y-doped SiO2 inclusions; excess glassy SiO2-rich material is also found at the grain boundaries. Two main reasons are found for the inhomogeneity: a slight SiO2 excess is inferred from the composition measurements, and the LiF flux used in hot pressing would also promote glass formation. Improved high-temperature mechanical properties would only be possible if residual glass formation was minimized, strategies for doing so are discussed, and the importance of analytical TEM for studying such submicron scale inhomogeneity is underlined.  相似文献   

18.
The microstructures of 5 wt% SiO2-doped TZP, 5 wt% (SiO2+ 2 wt% MgO)-doped TZP, and 5 wt% (SiO2+ 2 wt% Al2O3)-doped TZP are characterized by high-resolution electron microscopy, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy. An amorphous phase is formed at multiple grain junctions but not along the grain-boundary faces in these three materials. A small addition of MgO and Al2O3 into the SiO2 phase results in a marked reduction in tensile ductility of SiO2-doped TZP. This reduction seems to correlate with segregation of magnesium or aluminum ions at grain boundaries and a resultant change in the chemical bonding state.  相似文献   

19.
Calcia-stabilized zirconia, CSZ (7.5 wt% CaO), with impurities of A12O3, SiO2, MgO, Fe2O3, and TiO2, was sintered in air at 1783 K for times (t) up to 230 h. The microstructure consisted of grains of CSZ with small amounts of pores and a CaO-Al2O3-SiO2 eutectic. Grain diameters grew in proportion to t1/3. The results are consistent with a mechanism in which grain growth is limited by diffusion of Zr4+ ions through the liquid eutectic.  相似文献   

20.
The composite sol—gel (CSG) technology has been utilized to process SiC—Al2O3 ceramic/ceramic particulate reinforced composites with a high content of SiC (up to 50 vol%). Alumina sol, resulting from hydrolysis of aluminum isopropoxide, has been utilized as a dispersant and sintering additive. Microstructures of the composites (investigated using TEM) show the sol-originating phase present at grain boundaries, in particular at triple junctions, irrespective of the type of grain (i.e., SiC or Al2O3). It is hypothesized that the alumina film originating from the alumina sol reacts with SiO2 film on the surface of SiC grains to form mullite or alumina-rich mullite-glass mixed phase. Effectively, SiC particles interconnect through this phase, facilitating formation of a dense body even at very high SiC content. Comparative sinterability studies were performed on similar SiC—Al2O3 compositions free of alumina sol. It appears that in these systems the large fraction of directly contacting SiC—SiC grains prevents full densification of the composite. The microhardness of SiC—Al2O3 sol—gel composites has been measured as a function of the content of SiC and sintering temperature. The highest microhardness of 22.9 GPa has been obtained for the composition 50 vol% SiC—50 vol% Al2O3, sintered at 1850°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号